×

zbMATH — the first resource for mathematics

A Chebyshev collocation algorithm for 2D non-Boussinesq convection. (English) Zbl 0763.76061
A Chebyshev collocation algorithm is developed to integrate the time- dependent Navier-Stokes equations for natural convection flow with large temperature differences. The working fluid is assumed to be a perfect gas and its thermophysical properties vary with temperature according to Sutherland laws. The governing equations do not allow for acoustic waves. The generalized Helmholtz and Uzawa operators which arise from time discretization are solved iteratively and the performances of several types of preconditioners and iterative schemes are examined.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76R10 Free convection
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Haldenwang, P., (), (unpublished)
[2] Le Quéré, P.; Alziary de Roquefort, T., J. comput. phys., 57, 210, (1985)
[3] Vanel, J.M.; Peyret, R.; Bontoux, P., (), 477
[4] Gray, D.D.; Giorgini, A., Int. J. heat mass transf., 19, 545, (1976)
[5] Spiegel, E.A.; Veronis, G., Astrophys. J., 131, 442, (1960)
[6] McGregor, R.K.; Emery, A.F., J. heat transf., 391, (1969)
[7] Polezhaev, V.I., Fluid dyn. (USSR), 2, 70, (1967)
[8] Spradley, L.W.; Churchill, S.W., J. fluid mech., 70, 705, (1975)
[9] Graham, E., J. fluid mech., 70, 689, (1975)
[10] Patterson, J.; Imberger, J., J. fluid mech., 100, 65, (1980)
[11] Leonardi, E.; Reizes, J.A., (), 297
[12] Leonardi, E.; Reizes, J.A., (), 387
[13] Rehm, R.G.; Baum, H.R., J. res. nat. bur. stand., 83, 297, (1978)
[14] Forester, C.K.; Emery, A.F., J. comput. phys., 10, 487, (1972)
[15] Gough, D.O., J. atmos. sci., 26, 448, (1969)
[16] Paolucci, S., Sandia national lab. report SAND 82-8257, (1982), (unpublished)
[17] Le Quéré, P.; Humphrey, J.A.C.; Sherman, F.S., Num. heat transf., 4, 249, (1981)
[18] Chenoweth, D.R.; Paolucci, S., J. fluid mech., 169, 173, (1986)
[19] Paolucci, S.; Chenoweth, D.R., J. fluid mech., 201, 379, (1989)
[20] (), 227
[21] Fröhlich, J.; Peyret, R., (), 425
[22] Fröhlich, J., (), (unpublished)
[23] Haidvogel, D.; Zang, T.A., J. comput. phys., 30, 167, (1979)
[24] Guillard, H.; Désidéri, J.A., (), 305
[25] Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A., Spectral methods in fluid dynamics, (1988), Springer-Verlag New York · Zbl 0658.76001
[26] Morchoisne, Y., (), 275
[27] Montigny-Rannou, F.; Morchoisne, Y., Int. J. num. meth. fluids, 7, 175, (1987)
[28] Bernardi, C.; Maday, Y., Int. J. num. meth. fluids, 8, 537, (1988)
[29] Le Quéré, P., (), 227
[30] Rønquist, E.M., (), (unpublished)
[31] Le Quéré, P.; Alziary de Roquefort, T., (), 29
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.