zbMATH — the first resource for mathematics

Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy. (English) Zbl 0762.65074
The Cahn-Hilliard equation describing phase separation in a binary mixture is investigated by means of a finite element approach based on the backward Euler method. The authors prove existence, uniqueness and stability estimates for the solution of the discrete problem. Then, using embedding theorems of Sobolev type and the stability property, they establish the convergence of discrete solutions to the solution of the continuous problem.
The rest of the paper is devoted to the one-dimensional case. Two iterative procedures to solve the resulting algebraic problem are proposed, analyzed and applied to test calculations. In particular, a comparison is made with the case of quartic free energy earlier studied by other authors.
Reviewer: O.Titow (Berlin)

65Z05 Applications to the sciences
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76T99 Multiphase and multicomponent flows
35Q58 Other completely integrable PDE (MSC2000)
Full Text: DOI EuDML
[1] Blowey, J.F., Elliott, C.M. (1991): The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. Part I: Mathematical analysis. Eur. J. Appl. Math.2, 233-280 · Zbl 0797.35172 · doi:10.1017/S095679250000053X
[2] Blowey, J.F., Elliott, C.M. (1992): The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. Part II: Numerical analysis. Eur. J. Appl. Math.3, 147-179 · Zbl 0810.35158 · doi:10.1017/S0956792500000759
[3] Cahn, J.W., Hilliard, J.E. (1958): Free energy of a non-uniform system. I. Interfacial free energy. J. Chem. Phys.28, 258-267 · doi:10.1063/1.1744102
[4] Carr, J., Gurtin, M.E., Slemrod, M. (1984): Structured phase transitions on a finite interval. Arch. Rat. Mech. Anal.86, 317-351 · Zbl 0564.76075 · doi:10.1007/BF00280031
[5] Chakrabarti, A., Toral, R. (1989): Late stages of spinodal decomposition in a three dimensional model system. Phys. Rev. B39, 4386-4394 · doi:10.1103/PhysRevB.39.4386
[6] Ciavaldini, J.F. (1975): Analyse numérique d’un problème de Stefan à deux phases par une méthode d’elements finis. SIAM J. Numer. Anal.12, 464-487 · Zbl 0272.65101 · doi:10.1137/0712037
[7] Copetti, M.I.M., Elliott, C.M. (1990): Kinetics of phase decomposition processes: numerical solutions to Cahn-Hilliard equation. Materials Sci. Technol.6, 273-283
[8] Qiang, Du, Nicolaides, R.A. (1991): Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal.28, 1310-1322 · Zbl 0744.65089 · doi:10.1137/0728069
[9] Elliott, C.M. (1989): The Cahn-Hilliard model for the kinetics of phase separation. In: Mathematical models for phase change problems, In: J. Rodrigues (ed.), International Series of Numerical Mathematics, Vol. 88. Birkhäuser, Basel, pp. 35-74
[10] Elliott, C.M., French, D.A. (1987): Numerical studies of the Cahn-Hilliard equation for phase separation. I.M.A.J. Appl. Math.38, 97-128 · Zbl 0632.65113
[11] Elliott, C.M., French, D.A., Milner, F.A. (1989): A second order splitting method for the Cahn-Hilliard equation. Numer. Math.54, 575-590 · Zbl 0668.65097 · doi:10.1007/BF01396363
[12] Elliott, C.M., Larsson, S. (1992): Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation. Math. Comput.58, 603-630 · Zbl 0762.65075 · doi:10.1090/S0025-5718-1992-1122067-1
[13] Elliott, C.M., Luckhaus, S. (1991): A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy. I.M.A. (Minnesota) Preprint Series887
[14] Glowinski, R., Lions, J.L., Trémolières, R. (1981): Numerical analysis of variational inequalities. North-Holland, Amsterdam
[15] Lions, P.L., Mercier, B. (1979): Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal.16, 964-979 · Zbl 0426.65050 · doi:10.1137/0716071
[16] Meijer, P., Napiorkowski, M. (1987): The three-state lattice gas, a model for binary gas-liquid systems. J. Chem. Phys.86, 5771-5777 · doi:10.1063/1.452505
[17] Oono, Y., Puri, S. (1988): Study of phase separation by use of cell dynamical systems. I. Modelling. Phys. Rev. A38, 434-453 · doi:10.1103/PhysRevA.38.434
[18] Nochetto, R. (1991): Finite elements for free and moving boundary problems. In: W. Light, ed., Proceedings of the SERC summer school on numerical analysis. Advances in Numerical Analysis, Vol. 1. Clarendon Press, Oxford · Zbl 0733.65089
[19] Rogers, T.G., Elder, K.R., Desai, R.C. (1988): Numerical study of the late stages of spinodal decomposition. Phys. Rev. B37, 9638-9649 · doi:10.1103/PhysRevB.37.9638
[20] Temam, R. (1988): Infinite dimensional dynamical systems in mechanics and physics. applied Mathematical Sciences Series 68. Springer, Berlin Heidelberg New York · Zbl 0662.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.