Dukowicz, John K.; Dvinsky, Arkady S. Approximate factorization as a high order splitting for the implicit incompressible flow equations. (English) Zbl 0760.76059 J. Comput. Phys. 102, No. 2, 336-347 (1992). Summary: We apply the method of approximate factorization to derive a second-order accurate splitting of the incompressible flow equations (Stokes or Navier-Stokes equations). This is novel because the method of approximate factorization was believed inapplicable to this type of equation system. We demonstrate the resulting splitting on a second-order Crank-Nicolson discretization and point out its intimate relationship to some existing second-order accurate splitting (projection) methods. Further, we use the approximate factorization method to derive entirely new splittings. We first develop a new generalized second-order accurate splitting which may be specialized to a variety of applications. We indicate its applications to finite-elements, “checkerboard-free” cell-centered discretizations, and ocean modeling. We then generalize the original splitting to an arbitrary high-order scheme. Cited in 1 ReviewCited in 57 Documents MSC: 76M20 Finite difference methods applied to problems in fluid mechanics 76D05 Navier-Stokes equations for incompressible viscous fluids 76D07 Stokes and related (Oseen, etc.) flows Keywords:second-order accurate splitting; Crank-Nicolson discretization; finite elements; cell-centered discretizations; ocean modeling PDF BibTeX XML Cite \textit{J. K. Dukowicz} and \textit{A. S. Dvinsky}, J. Comput. Phys. 102, No. 2, 336--347 (1992; Zbl 0760.76059) Full Text: DOI References: [1] Harlow, F.H.; Welch, J.E., Phys. fluids, 8, 2182, (1965) [2] Chorin, A.J., Math. comput., 22, 745, (1968) [3] Yanenko, N.N., The method of fractional steps, (1971), Springer-Verlag New York · Zbl 0209.47103 [4] Gresho, P.M., Int. J. num. methods fluids, 11, 587, (1990) [5] Orszag, S.A.; Israeli, M.; Deville, M.O., J. sci. comput., 1, 75, (1986) [6] Gresho, P.M.; Sani, R., Int. J. num. methods fluids, 7, 1111, (1987) [7] Fortin, M.; Peyret, R.; Temam, R., J. mec., 10, 357, (1971) [8] Kim, J.; Moin, P., J. comput. phys., 59, 308, (1985) [9] Zang, T.A.; Hussaini, M.Y., Appl. math. comput., 19, 359, (1986) [10] Deville, M.; Kleiser, L.; Montigny-Rannou, F., Int. J. num. methods fluids, 4, 1149, (1984) [11] Van Kan, J., SIAM J. sci. stat. comput., 7, 870, (1986) [12] Bell, J.B.; Colella, P.; Glaz, H.M., J. comput. phys., 85, 257, (1989) [13] Warming, R.F.; Beam, R.M., (), 85 [14] Marchuk, G.I., Methods of numerical mathematics, (1982), Springer-Verlag New York · Zbl 0485.65003 [15] Briley, W.R.; McDonald, H., J. comput. phys., 34, 54, (1980) [16] Briley, W.R.; McDonald, H., J. comput. phys., 24, 372, (1977) [17] Gresho, P.M.; Chan, S.T., Int. J. num. methods fluids, 11, 621, (1990) [18] Karniadakis, G.E.; Israeli, M.; Orszag, S.A., J. comput. phys., 97, 414, (1991) [19] A.S. Dvinsky and J.K. Dukowicz, Computers and Fluids, submitted. [20] Shaw, C.T., Int. J. num. methods fluids, 12, 81, (1991) [21] Rice, J.G.; Schnipke, R.J., Comput. methods appl. mech. eng., 58, 135, (1986) [22] Semtner, A.J., Advanced physical oceanographic numerical modelling, (), 187 [23] Hildebrand, F.B., Introduction to numerical analysis, (1982), McGraw-Hill New York · Zbl 0070.12401 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.