zbMATH — the first resource for mathematics

Finite element methods for the Helmholtz equation in an exterior domain: Model problems. (English) Zbl 0760.76047
Summary: Finite element methods are presented for the reduced wave equation is unbounded domains. Model problems of radiation with inhomogeneous Neumann boundary conditions, including the effects of a moving acoustic medium, are examined for the entire range of propagation and decay. Exterior boundary conditions for the computational problem over a finite domain are derived from an exact relation between the solution and its derivatives on that boundary. Galerkin, Galerkin/least-squares and Galerkin/gradient least-squares finite element methods are evaluated by comparing errors pointwise and in integral norms. The Galerkin/least- squares method is shown to exhibit superior behavior for this class of problems.

76M10 Finite element methods applied to problems in fluid mechanics
76Q05 Hydro- and aero-acoustics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
Full Text: DOI
[1] Chertock, G., Integral equation methods in sound radiation and scattering from arbitrary structures, NSRDC technical report 3538, (1971), Washington, DC
[2] Kleinman, R.E.; Roach, G.F., Boundary integral equations for the three-dimensional Helmholtz equation, SIAM rev., 16, 2, 214-236, (1974) · Zbl 0253.35023
[3] Copely, L.G., Fundamental results concerning integral representations in acoustic radiation, J. acoust. soc. amer., 44, 1, 28-32, (1968) · Zbl 0162.57204
[4] Kupradze, V.D., Fundamental problemsin the mathematical theory of diffraction (steady state processes), (1935), translated by C.D. Benster, N.B.S. Rep. 2008 (1952)
[5] Lamb, H., Hydrodynamics, (1932), Cambridge Univ. Press Cambridge · JFM 26.0868.02
[6] Schenck, H.A., Improved integral formulation for acoustic radiation problems, J. acoust. soc. amer., 44, 41-58, (1968) · Zbl 0187.50302
[7] Burton, A.J.; Miller, G.F., The application of integral equation methods to the numerical solution of some exterior boundary-value problems, (), 201-210 · Zbl 0235.65080
[8] Cunefare, K.A.; Koopman, G.; Brod, K., A boundary element method for acoustic radiation valid for all wavenumbers, J. acoust. soc. amer., 85, 1, 39-48, (1989)
[9] Hall, H.R.; Bernhard, R.J., Total least squares solutions to acoustic boundary element models, (), 145-152
[10] Kirkup, S.M., Solution of exterior acoustic problems by the boundary element method, Ph.D. thesis, department of mathematical sciences, brighton polytechnic, brighton, UK, (1989) · Zbl 0775.73037
[11] Seybert, A.F.; Rengarajan, T.K., The use of CHIEF to obtain unique solutions for acoustic radiation using boundary integral equations, J. acoust. soc. amer., 81, 1299-1306, (1987)
[12] Everstine, G.C.; Quezon, A., User’s guide to the coupled NASTRAN/Helmholtz equation capability (NASHUA) for acoustic radiation and scattering, ()
[13] Bettess, P., Infinite elements, Internat. J. numer. methods engrg., 11, 53-64, (1977) · Zbl 0362.65093
[14] Bayliss, A.; Turkel, E., Radiation boundary conditions for wave-like equations, Commun. pure appl. math., 33, 707-725, (1980) · Zbl 0438.35043
[15] Pinsky, P.N.; Abboud, N.N., Transient finite element analysis of the exterior structural acoustics problem, (), 35-48
[16] Givoli, D.; Keller, J.B., A finite element method for large domains, Comput. methods appl. mech. engrg., 76, 41-66, (1989) · Zbl 0687.73065
[17] Hughes, T.J.R.; Brooks, A.N., A multi-dimensional upwind scheme with no crosswind diffusion, (), 19-35 · Zbl 0423.76067
[18] Hughes, T.J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: III. the generalized streamline operator for multidimensional advective-diffusive systems, Comput. methods appl. mech. engrg., 58, 305-328, (1986) · Zbl 0622.76075
[19] Johnson, C.; Nävert, U.; Pitkäranta, J., Finite element methods for linear hyperbolic problems, Comput. methods appl. mech. engrg., 45, 285-312, (1984) · Zbl 0526.76087
[20] Hughes, T.J.R.; Franca, L.P.; Harari, I.; Mallet, M.; Shakib, F.; Spelce, T.E., Finite element methods for high-speed flows: consistent calculation of boundary flux, ()
[21] Hughes, T.J.R.; Shakib, F., Computational aerodynamics and the finite element method, ()
[22] Johnson, C., Streamline diffusion methods for problems in fluid mechanics, (), 251-261
[23] Johnson, C.; Saranen, J., Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations, Math. comp., 47, 1-18, (1986) · Zbl 0609.76020
[24] Hughes, T.J.R., Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations, Internat. J. numer. methods engrg., 7, 1261-1275, (1987) · Zbl 0638.76080
[25] Johnson, C., Numerical solutions of partial differential equations by the finite element method, (1987), Cambridge Univ. Press Cambridge
[26] Hughes, T.J.R.; Franca, L.P.; Hulbert, G.M., A new finite element formulation for computational fluid dynamics: VIII. the Galerkin/least-squares method for advective-diffusive equations, Comput. methods appl. mech. engrg., 73, 173-189, (1989) · Zbl 0697.76100
[27] Franca, L.P.; Hughes, T.J.R., Two classes of mixed finite element methods, Comput. methods appl. mech. engrg., 69, 89-129, (1988) · Zbl 0651.65078
[28] Hughes, T.J.R.; Hulbert, G.M., Space-time finite element methods for elastodynamics: formulations and error estimates, Comput. methods appl. mech. engrg., 66, 339-363, (1988) · Zbl 0616.73063
[29] Franca, L.P.; Dutra do Carmo, E.G., The Galerkin gradient least-squares method, Comput. methods appl. mech. engrg., 74, 41-54, (1989) · Zbl 0699.65077
[30] Wilcox, C.H., Scattering theory for the d’Alembert equation in exterior domains, (1975), Springer Berlin · Zbl 0299.35002
[31] Keller, J.B.; Givoli, D., Exact non-reflecting boundary conditions, J. comput. phys., 82, 1, 172-192, (1989) · Zbl 0671.65094
[32] Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, (1987), Prentice-Hall Englewood Cliffs, NJ
[33] Goldstein, M.E., Aeroacoustics, (1974), McGraw-Hill New York · Zbl 0381.76061
[34] Mizukami, A., A mixed finite element method for boundary flux computation, Comput. methods appl. mech. engrg., 57, 239-243, (1986) · Zbl 0587.76143
[35] Shakib, F., Finite element analysis of the compressible Euler and Navier-Stokes equations, ()
[36] Strang, G.; Fix, G.J., An analysis of the finite element method, (1973), Prentice-Hall Englewood Cliffs, NJ · Zbl 0278.65116
[37] Mason, J., Methods of functional analysis for application in solid mechanics, (1985), Elsevier Amsterdam · Zbl 0595.73019
[38] Ciarlet, P.G., The finite element method for elliptic problems, (1978), North-Holland Amsterdam · Zbl 0445.73043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.