×

zbMATH — the first resource for mathematics

Compact finite difference schemes with spectral-like resolution. (English) Zbl 0759.65006
Finite difference schemes providing an improved representation of a range of scales ( spectral-like resolution) in the evaluation of derivatives are presented. The errors are considered from the viewpoint of different scales.
[This may partly compensate for the fact that the consideration of the order of the truncation error is not sufficient for the evaluation of the quality of difference schemes when differential equations are to be solved.] On the other hand, stability is not included in the discussion of applications to fluid mechanics.
Reviewer: D.Braess (Bochum)

MSC:
65D25 Numerical differentiation
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Software:
symrcm
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Gottlieb, D.; Orszag, S.A., Numerical analysis of spectral methods, (1977), SIAM Philadelphia · Zbl 0412.65058
[2] Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A., Spectral methods in fluid dynamics, (1987), Springer-Verlag New York · Zbl 0636.76009
[3] Rogallo, R.; Moin, P., Annu. rev. fluid mech., 16, 99, (1984)
[4] Kim, J.; Moin, P.; Moser, R.D., J. fluid mech., 177, 133, (1987)
[5] Spalart, P., J. fluid mech., 187, 61, (1988)
[6] Rai, M.M.; Moin, P., AIAA paper, AIAA-89-0369, reno, (1989)
[7] Patera, A.T., J. comput. phys., 54, 468, (1984)
[8] Ghaddar, N.K.; Kariadakis, G.E.; Patera, A.T., Numer. heat transfer, 9, 277, (1986)
[9] Karniadakis, G.E., Appl. numer. math., 5, (1989)
[10] Swartz, B.; Wendroff, B., (), 153
[11] Swartz, B., (), 279
[12] Swartz, B.; Wendroff, B., SIAM J. numer. anal., 11, 979, (1974)
[13] Swartz, B., (), 17
[14] Kreiss, H.O.; Oliger, J., Tellus, 3, 99, (1972)
[15] Kreiss, H.O.; Orszag, S.A.; Israeli, M., Annu. rev. fluid mech., 6, 281, (1974)
[16] Hirsh, R.S., J. comput. phys., 19, 90, (1975)
[17] Adam, Y., J. comput. phys., 24, 10, (1977)
[18] Mansour, N.N.; Moin, P.; Reynolds, W.C.; Ferziger, J.H., (), 386
[19] Rubin, S.G.; Khosla, P.K., J. comput. phys., 24, 217, (1977)
[20] Adam, Y., Comput. math. appl., 1, 393, (1975)
[21] Goedheer, W.J.; Potters, J.H.H.M., J. comput. phys., 61, 269, (1985)
[22] Collatz, L., The numerical treatment of differential equations, (), 538
[23] Kopal, Z., Numerical analysis, (), 552
[24] Vichnevetsky, R.; Bowies, J.B., Fourier analysis of numerical approximations of hyperbolic equations, (1982), SIAM Philadelphia
[25] Roberts, K.V.; Weiss, N.O., Math. comput., 20, 272, (1866)
[26] Fromm, J.E.; Fromm, J.E., Phys. fluids, Phys. fluids, Suppl II, II-12, (1969)
[27] Orszag, S.A., J. fluid mech., 49, 75, (1971)
[28] Orszag, S.A., Stud. appl. math., 49, 395, (1971)
[29] Trapp, J.A.; Ramshaw, J.D., J. comput. phys., 20, 238, (1976)
[30] Vichnevetsky, R., Math. comput. simul., 21, 170, (1979)
[31] Herring, J.R.; Orszag, S.A.; Kraichnan, R.H.; Fox, D.G., J. fluid mech., 66, 417, (1974)
[32] Rogallo, R., Nasa tm-81315, (1981)
[33] T. A. Zang, Appl. Num. Math., to appear.
[34] Horiuti, K., J. comput. phys., 71, 343, (1987)
[35] Kerr, R.M., J. fluid mech., 153, 31, (1985)
[36] Lele, S.K., AIAA paper, AIAA-89-0374, reno, (1989)
[37] Sandham, N.D.; Reynolds, W.C.; Sandham, N.D.; Reynolds, W.C., (), AIAA paper, AIAA-89-0371, reno, (1989)
[38] Strikwerda, J., J. comput. phys., 34, 94, (1980)
[39] Warming, R.F.; Beam, R.M., (), 647, New York/Berlin
[40] Thompson, K., J. comput. phys., 68, 1, (1987)
[41] Poinsot, T.; Lele, S.K., (), to appear
[42] Buell, J.C.; Buell, J.C.; Buell, J.C., (), 95, 9.2.1-338, (1991)
[43] Buell, J.C.; Huerre, P., (), 19
[44] Papamoschou, D.; Roshko, A., J. fluid mech., 197, 453, (1988)
[45] Lagerstrom, P.A.; Lagerstrom, P.A., (), 453
[46] George, A.; Liu, J.W-H., Computer solution of large sparse positive definite systems, (), 51
[47] Brigham, E.O., The fast Fourier transform, (), 194
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.