×

Finite rotation analysis and consistent linearization using projectors. (English) Zbl 0757.73034

A systematic procedure is presented for extending the capabilities of an existing linear finite element of accomodate finite rotation analysis. The approach is based on the element – independent co-rational algorithm, where the element rigid body motion is separated from the deformational part of its total motion by attaching a local frame to the element, such that the motion of the element with respect to this local frame fully describes the deformation. The independence of the internal strain energy of an element on the rigid body part of the motion is used to obtain invariance conditions for the element internal force vector and the tangent stiffness matrix. The consistent linearization of the co- rotational formulation results in a projector matrix, whose action has no effect on consistent internal forces and moments. The anti-symmetric part of the tangent stiffness matrix is shown to depend on the out-of-balance force vector. It is proved that using the symmetric part of the tangent matrix, the Newton iteration retains its quadratic rate of convergence. Three large rotation test examples are solved. The results demonstrate that it is possible to analyze structures displaying highly nonlinear behaviour involving very large rotations within a general co-rotational framework, using simple and economical finite elements.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Belytschko, T.; Hsieh, B. J., Non-linear transient finite elements analysis with convected co-ordinates, Internat. J. Numer. Methods Engrg., 7, 255-271 (1973) · Zbl 0265.73062
[2] Rankin, C. C.; Brogan, F. A., An element-independent co-rotational procedure for the treatment of large rotations, ASME J. Pressure Vessel Techn., 108, 165-174 (1986)
[3] Wempner, G., Finite elements, finite rotations and small strains of flexible shells, Internat. J. Solids and Structures, 5, 117-153 (1969) · Zbl 0164.26505
[4] Belytschko, T.; Schwer, L., Large displacement transient analysis of space frames, Internat. J. Numer. Methods Engrg., 11, 65-84 (1977) · Zbl 0347.73053
[5] Horrigmoe, G.; Bergen, P. G., Instability analysis of free-form shells by flat finite elements, Comput. Methods Appl. Mech. Engrg., 16, 11-35 (1978) · Zbl 0384.73059
[6] Argyris, J., An excursion into large rotations, Comput. Methods Appl. Mech. Engrg., 32, 85-155 (1982) · Zbl 0505.73064
[7] De Veubeke, B. F., The dynamics of flexible bodies, Internat. J. Engrg. Sci., 14, 895-913 (1976) · Zbl 0343.73002
[8] Nygard, M. K.; Bergan, P. G., Advances in treating large rotations for nonlinear problems, (Noor, A. K.; Oden, J. T., State of the Art Surveys on Computational Mechanics (1989), ASME: ASME New York) · Zbl 0579.73077
[9] Rankin, C. C.; Nour-Omid, B., The use of projectors to improve finite element performance, Comput. & Structures, 30, 257-267 (1988) · Zbl 0668.73054
[10] Belytschko, T.; Stolarski, H.; Crapenter, N., A
((C^0\) triangular plate element with one-point quadrature, Internat. J. Numer. Methods Engrg., 20, 787-802 (1984) · Zbl 0528.73069
[11] Crisfield, M. A., A consistent co-rotational formulation for non-linear three-dimensional, beam elements, Comput. Methods Appl. Mech. Engrg., 81, 131-150 (1990) · Zbl 0718.73085
[12] Simo, J. C., A finite strain beam formulation. The three-dimensional dynamic problem. Part I, Comput. Methods Appl. Mech. Engrg., 49, 55-70 (1985) · Zbl 0583.73037
[13] Simo, J. C.; Vu-Quoc, L., A three-dimensional finite strain rod model. Part II: Computational aspects, Comput. Methods Appl. Mech. Engrg., 58, 79-116 (1986) · Zbl 0608.73070
[14] Almroth, B. O.; Brogan, F. A.; Stanley, G. M., Structural analysis of general shells, (User’s instructions for STAGSC-1, Lockheed Report LMSC-D633873, Vol. II (1979), Lockheed Palo Alto Research Laboratory: Lockheed Palo Alto Research Laboratory Palo Alto, CA) · Zbl 0231.73021
[15] Argyris, J. H.; Balmer, H.; Doltsinis, J. St.; Dunne, P. C.; Haase, M.; Kleiber, M.; Malejannakis, G. A.; Mlejenek, H.-P.; Müller, M.; Scharpf, D. W., Finite element method — the natural approach, Comput. Methods Appl. Mech. Engrg., 17/18, 1-106 (1979) · Zbl 0407.73058
[16] Thurston, G. A.; Brogan, F. A.; Stehlin, P., Postbuckling analysis using a general purpose code, AIAA J., 24, 1013-1020 (1986)
[17] Greenhill, A. G., (Proc. Inst. Mech. Engineers. Proc. Inst. Mech. Engineers, London (1883))
[18] Rosenthal, F., Greenhill’s formula and the mechanics of cable hockling, (NRL Report 7940 (1975), Naval Research Laboratory: Naval Research Laboratory Washington, DC)
[19] Southwell, R. V., An Introduction to the Theory of Elasticity (1969), Dover: Dover New York
[20] Simo, J. C.; Fox, D. D.; Rifai, M. S., On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory, Comput. Methods Appl. Mech. Engrg., 79, 21-70 (1990) · Zbl 0746.73015
[21] Gantmacher, (Matrix Theory, Vol. II (1977), Chelsea: Chelsea New York)
[22] Hughes, T. J.R.; Winget, J., Finite rotation effects in numerical integration of rate constitutive equations arising in large deformation analysis, Internat. J. Numer. Methods Engrg., 15, 1413-1418 (1980) · Zbl 0463.73081
[23] Spurrier, R. A., Comment on singularity-free extraction of a quaternion from a direction-cosine matrix, J. Spacecraft, 15, 4, 255 (1978)
[24] Szwabowicz, M. L., Variational formulation in the geometrically non-linear thin elastic shell theory, Internat. J. Solids and Structures, 22, 1161-1175 (1986) · Zbl 0603.73011
[25] Bathe, K. J.; Bolourchi, S., Large displacement analysis of three dimensional beam structures, Internat. J. Numer. Methods Engrg., 14, 961-986 (1979) · Zbl 0404.73070
[26] Cardona, A.; Geradin, M., A beam element non-linear theory with finite rotations, Internat. J. Numer. Methods Engrg., 26, 2403-2438 (1988) · Zbl 0662.73049
[27] Simmonds, J. G.; Danielson, D. P., Nonlinear shell theory with finite rotation and stress function vectors, ASME J. Appl. Mech., 39, 94, 1085-1095 (1972) · Zbl 0248.73043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.