×

zbMATH — the first resource for mathematics

Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities. (English) Zbl 0756.92026
Summary: A classical predator-prey model is considered with reference to the case of periodically varying parameters. Six elementary seasonality mechanisms are identified and analysed in detail by means of a continuation technique producing complete bifurcation diagrams. The results show that each elementary mechanism can give rise to multiple attractors and that catastrophic transitions can occur when suitable parameters are slightly changed.
Moreover, the two classical routes to chaos, namely, torus destruction and cascade of period doublings, are numerically detected. Since in the case of constant parameters the model cannot have multiple attractors, catastrophes and chaos, the results support the conjecture that seasons can very easily give rise to complex population dynamics.

MSC:
92D40 Ecology
37N99 Applications of dynamical systems
37G99 Local and nonlocal bifurcation theory for dynamical systems
PDF BibTeX Cite
Full Text: DOI
References:
[1] Afrajmovich, V. S., V. I. Arnold, Yu. S. Il’ashenko and P. Shilnikov. 1991. Bifurcation theory InDynamical Systems, Vol. 5, V. I. Arnold (Ed.),Encyclopaedia of Mathematical Sciences, New York: Springer Verlag.
[2] Allen, J. C. 1989. Are natural enemy populations chaotic? InEstimation and Analysis of Insect Populations, Lecture Notes in Statistics, Vol. 55, L. McDonald, B. Manly, J. Lockwood and J. Logan (Eds), pp. 190–205, New York: Springer Verlag.
[3] Arnold, V. I., 1982.Geometrical Methods in the Theory of Ordinary Differential Equations. New York: Springer Verlag.
[4] Aron, J. L. and I. B. Schwartz. 1984. Seasonality and period-doubling bifurcations in an epidemic model.J. theor. Biol. 110, 665–679.
[5] Bajaj, A. K. 1986. Resonant parametric perturbations of the Hopf bifurcation.J. Math. Anal. Appl.,115, 214–224. · Zbl 0588.34031
[6] Bardi, M. 1981. Predator-prey models in periodically fluctuating environments.J. math. Biol. 12, 127–140. · Zbl 0466.92019
[7] Butler, G. J., S. B. Hsu and P. Waltman. 1985. A mathematical model of the chemostat with periodic washout rate.SIAM J. appl. Math. 45, 435–449. · Zbl 0584.92027
[8] Cheng, K. S. 1981. Uniquencess of a limit cycle for a predator-prey system.SIAM J. math. Anal. 12, 541–548. · Zbl 0471.92021
[9] Cushing, J. M. 1977. Periodic time-dependent predator-prey systems.SIAM J. appl. Math. 32, 82–95. · Zbl 0348.34031
[10] Cushing, J. M. 1980. Two species competition in a periodic environment.J. math. Biol. 10, 384–400. · Zbl 0455.92012
[11] Cushing, J. M. 1982. Periodic Kolmogorov systems.SIAM J. math. Anal.,13, 811–827. · Zbl 0506.34039
[12] De Mottoni, P. and A. Schiaffino. 1981. Competition systems with periodic coeficients: a geometric approach.J. math. Biol. 11, 319–335. · Zbl 0474.92015
[13] Gambaudo, J. M. 1985. Perturbation of a Hopf bifurcation by an external time-periodic forcing.J. Diff. Eqns 57, 172–199. · Zbl 0516.34042
[14] Guckenheimer, J. and P. Holmes. 1986.Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York: Springer Verlag. · Zbl 0515.34001
[15] Gutierrez, E. and H. Almiral. 1989. Temporal properties of some biological systems and their fractal attractors.Bull. math. Biol. 51, 785–800.
[16] Hastings, A. and T. Powell. 1991. Chaos in a three species food chain.Ecology 72, 896–903.
[17] Hogeweg, P. and B. Hesper. 1978. Interactive instruction on population interactions.Comput. Biol. Med. 8, 319–327.
[18] Holling, C. S. 1965. The functional response of predators to prey density and its role in mimicry and population regulation.Mem. Entomol. Soc. Can. 45, 5–60.
[19] Inoue, M. and H. Kamifukumoto. 1984. Scenarios leading to chaos in forced Lotka-Volterra model.Prog. theor. Phys. 71, 930–937. · Zbl 1074.37522
[20] Kath, W. L. 1981. Resonance in periodically perturbed Hopf bifurcation.Stud. Appl. Math. 65, 95–112. · Zbl 0487.34041
[21] Khibnik, A. I. 1990a. LINLBF: A program for continuation and bifurcation analysis of equilibria up to condimension three. InContinuation and Bifurcations: Numerical Techniques and Applications, D. Roose, B. de Dier and A. Spence (Eds.), pp. 283–296. Netherlands: Kluwer Academic Publishers.
[22] Khibnik, A. I. 1990b. Numerical methods in bifurcation analysis of dynamical systems: parameter continuation approach. InMathematics and Modelling, Yu. G. Zarhin and A. D. Bazykin (Eds), pp. 162–197. Pushchino: Center of Biological Research of the U.S.S.R. Academy of Sciences (in Russian).
[23] Kot, M. and W. M. Schaffer. 1984. The effects of seasonality on discrete models of population growth.Theor. pop. Biol. 26, 340–360. · Zbl 0551.92014
[24] Kot, M., W. M. Schaffer, G. L. Trutty, D. J. Grasser and L. F. Olsen. 1988. Changing criteria for imposing orders.Ecol. Model. 43, 75–110.
[25] Kot, M., G. S. Sayler and T. W. Schultz. 1992. Complex dynamics in a model microbial system.Bull. math. Biol. 54, 619–648. · Zbl 0761.92041
[26] Kuznetsov, Yu. A. and S. Rinaldi. 1991. Numerical analysis of the flip bifurcation of maps.Appl. math. Comp. 43, 231–236. · Zbl 0729.65050
[27] Kuznetsov, Yu. A., S. Muratori and S. Rinaldi. 1992.Bifurcations and chaos in a periodic predator-prey model. Int. J. Bifurcation Chaos 2, in press. · Zbl 1126.92316
[28] Lancaster, P. and M. Tismenetsky. 1985.The Theory of Matrices. San Diego: Academic Press. · Zbl 0558.15001
[29] Lauwerier, H. A. and J. A. J. Metz. 1986. Hopf bifurcation in host-parasitoid models.IMA J. Math. appl. Med. Biol. 3, 191–210. · Zbl 0609.92029
[30] May, R. M. 1972. Limit cycles in predator-prey communities.Science 17, 900–902.
[31] May, R. M. 1974. Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos.Science 186, 645–647.
[32] Metz, J. A. J. and F. H. D. van Batenburg. 1985. Holling’s ”hungry mantid” model for the invertebrate functional response considered as a Markov process. Part I: the full model and some of its limits.J. math. Biol. 22, 209–238. · Zbl 0616.92008
[33] Namachchivaya, S. N. and S. T. Ariaratnam. 1987. Periodically perturbed Hopf bifurcation.SIAM J. appl. Math.,47, 15–39. · Zbl 0625.70022
[34] Namba, T. 1986. Bifurcation phenomena appearing in the Lotka-Volterra competition equation: a numerical study.Math. Biosci. 81, 191–212. · Zbl 0603.92018
[35] Olsen, L. F., G. L. Truty and W. M. Schaffer. 1988. Oscillations and chaos in epidemic: a nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark.Theor. pop. Biol. 33, 344–370. · Zbl 0639.92012
[36] Robertson, D. R., C. W. Petersen and J. D. Brawn. 1990. Lunar reproductive cycles of benthic-broading reef fishes: reflections of larval biology or adult biology?Ecol. Monogr. 60, 311–329.
[37] Rosenblat, S. and D. S. Cohen. 1981. Periodically perturbed bifurcation–II Hopf bifurcation.Stud. appl. Math. 64, 143–175. · Zbl 0482.34037
[38] Schaffer, W. M. 1984. Stretching and folding in Lynx fur returns: evidence for a strange attractor in nature?Am. Nat. 124, 798–820.
[39] Schaffer, W. M. 1988. Perceiving order in the chaos of nature. InEvolution of Life Histories of Mammals, M. S. Boyce (Ed.), pp. 313–350. New Haven: Yale University Press.
[40] Scheffer, M. 1990. Should we expect strange attractors behind plankton dynamics and if so, should we bother? Ph.D. Thesis, University of Utrecht, The Netherlands (to be published inJ. Plankton Res.).
[41] Schwartz, I. B. and H. L. Smith. 1983. Infinite subharmonic bifurcation in an SEIR epidemic model.J. math. Biol. 18, 233–253. · Zbl 0523.92020
[42] Smith, H. L. 1981. Competitive coexistence in an oscillating chemostat.SIAM J. appl. Math. 40, 498–522. · Zbl 0467.92018
[43] Sugihara, G. and R. M. May. 1990. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series.Nature 344, 734–741.
[44] Toro, M. and J. Aracil. 1988. Quanlitative analysis of system dynamics ecological models.Syst. Dyn. Rev. 4, 56–80.
[45] Verhulst, P. F. 1845. Recherches mathématiques sur la loi d’accroissement de la population.Mem. Acad. r. Belg.,18, 1–38 (in French).
[46] Wrzosek, D. M. 1990. Limit cycles in predator-prey models.Math. Biosci. 98, 1–12. · Zbl 0694.92015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.