×

zbMATH — the first resource for mathematics

A standard test set for numerical approximations to the shallow water equations in spherical geometry. (English) Zbl 0756.76060
The numerical methods devised by the authors for solving shallow water equations in spherical geometry are applied to seven test cases presented in order of complexity. The aim, of course, is to perfect a numerical method for climate modelling. The seven cases are as follows: (i) advection of cosine bell over the pole, (ii) steady nonlinear zonal geostrophic flow, (iii) nonlinear steady zonal geostrophic flow with compact support, (iv) forced nonlinear system with a translating low pressure centre, (v) zonal flow over an isolated mountain, (vi) Rossby- Haurwitz wave, and (vii) observed atmospheric states.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76U05 General theory of rotating fluids
76B65 Rossby waves (MSC2010)
86A10 Meteorology and atmospheric physics
Software:
chammp
PDF BibTeX Cite
Full Text: DOI
References:
[1] Baumhefner, D.P.; Bettge, T.W., Characteristics of atmospheric planetary circulation and associated model forecast skill during FGGE case studies selected by WGNE, (), 2.26
[2] Bengtsson, L., Tellus, 33, 19, (1981)
[3] Browning, G.L.; Hack, J.J.; Swarztrauber, P.N., Mon. weather rev., 117, 1058, (1989)
[4] Côté, J., Q.J.R. meteorol. soc., 114, 1347, (1988)
[5] Côté, J.; Staniforth, A., Mon. weather rev., 116, 2003, (1988)
[6] ECMWF, ()
[7] Eliasen, E.; Machenhauer, B.; Rasmussen, E., (), (unpublished)
[8] Hack, J.J.; Jakob, R., (), (unpublished)
[9] Haltiner, G.J.; Williams, R.T., Numerical prediction and dynamic meteorology, (1980), Wiley Boulder, CO
[10] Haurwitz, B., J. mar. res., 3, 254, (1940)
[11] Holton, J.J., An introduction to dynamic meteorology, (1979), Academic Press New York
[12] Hoskins, B.J., Q.J.R. meteorol. soc., 99, 723, (1973)
[13] Jakob, R.; Hack, J.J.; Williamson, D.L., (), (unpublished)
[14] Kreiss, H.-O.; Oliger, J., Tellus, 24, 199, (1972)
[15] Machenhauer, B., (), 121, Chap. 3
[16] Masuda, Y.; Ohnishi, H., (), 317
[17] Orszag, S.A., J. atmos. sci., 27, 890, (1970)
[18] Paldor, N.; Killworth, P.D., J. atmos. sci., 45, 4013, (1988)
[19] Pearson, F., Map projection: theory and applications, (1990), CRC Press Tokyo
[20] Pennell, S.A.; Seitter, K.L., J. atmos. sci., 47, 2032, (1990)
[21] Phillips, N.A., Mon. weather rev., 87, 333, (1959)
[22] Rasch, P.J.; Williamson, D.L., J. geophys. res., 96, 13123, (1991)
[23] Ritchie, H., Mon. weather rev., 116, 1587, (1988)
[24] Saucier, W.J., Principles of meteorological analysis, (1962), Univ. of Chicago Press Boca Raton, FL
[25] Steers, J.A., An introduction to the study of map projections, (1962), Univ. of London Press, Ltd. Chicago · Zbl 0033.21602
[26] Swarztrauber, P.N., SIAM J. numer. anal., 18, 191, (1981)
[27] Takacs, L.L., Mon. weather rev., 116, 525, (1988)
[28] Thompson, P.D., Meteorol. atmos. phys., 38, 89, (1988)
[29] Trenberth, K.E.; Olson, J.G., (), (unpublished)
[30] Tribbia, J.J., Geophys. astrophys. fluid dyn., 30, 131, (1984)
[31] Williamson, D.L., (), 51, Chap. 2
[32] Williamson, D.L.; Browning, G.L., J. appl. meteorol., 12, 264, (1973)
[33] Williamson, D.L.; Kiehl, J.T.; Ramanathan, V.; Dickinson, R.E.; Hack, J.J., (), (unpublished)
[34] Williamson, D.L.; Rasch, P.J., Mon. weather rev., 117, 102, (1989)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.