zbMATH — the first resource for mathematics

Perturbative renormalization of composite operators via flow equations. I. (English) Zbl 0755.60100
Summary: We apply the general framework of the continuous renormalization group, whose significance for perturbative quantum field theories was recognized by Polchinski, to investigate by new and mathematically simple methods the perturbative renormalization of composite operators. We demonstrate the perturbative renormalizability of the Green functions of the Euclidean massive \(\Phi^ 4_ 4\) theory with one insertion of a (possibly oversubtracted, in the BPHZ language) composite operator. Moreover we show that our method admits an easy proof of the Zimmermann identities and of the Lowenstein rule.

60K40 Other physical applications of random processes
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
Full Text: DOI
[1] Zimmermann, W.: Local operator products and renormalization in quantum field theory. In: Lectures on Elementary Particles and Quantum Field Theory; Brandeis Summer Institute 1970, Deser, S., Grisaru, M., Pendleton, H. (eds.). Cambridge, MA: MIT Press 1970
[2] Zimmermann, W.: Ann. Phys.77, 536 (1973)
[3] Zimmermann, W.: Ann. Phys.77, 570 (1973)
[4] Lowenstein, J.: Phys. Rev.D4, 2281 (1971)
[5] Lowenstein, J.: Commun. Math. Phys.24, 1 (1971) · Zbl 0221.35008
[6] Schroer, B.: Lett. Nuovo Cimento2, 867 (1971)
[7] Gomes, M., Lowenstein, J.: Nucl. Phys.B45, 252 (1972)
[8] Lowenstein, J., Schroer, B.: Phys. Rev.D6, 1553 (1972)
[9] Lowenstein, J.: BPHZ Renormalization. In: Renormalization theory; Erice Advanced Study Institute 1975, Velo, G., Wightman, A. (eds.), Amsterdam: D. Reidel 1976
[10] Lowenstein, J.: 1972 Maryland Lectures, Univ. of Maryland Technical Report 73-068
[11] Gallavotti, G., Nicolò, F.: Commun. Math. Phys.100, 545 (1985); Gallavotti, G., Nicolò, F.: Commun. Math. Phys.101, 247 (1986)
[12] Feldman, J., Hurd, T., Rosen, L., Wright, J.: QED: A proof of renormalizability, Lecture Notes in Physics vol.312, Berlin, Heidelberg, New York: Springer 1988
[13] Hurd, T.: Commun. Math. Phys.125, 515 (1989) · Zbl 0681.53069
[14] Rosen, L., Wright, J.: Commun. Math. Phys.134, 433 (1990) · Zbl 0719.58043
[15] Polchinski, J.: Nucl. Phys.B231, 269 (1984)
[16] Keller, G., Kopper, C., Salmhofer, M.: Perturbative Renormalization and Effective Lagrangians in {\(\Phi\)} 4 4 . MPI preprint MPI-PAE/PTh 65/90, Helv. Phys. Acta, to appear
[17] Keller, G., Kopper, C.: Perturbative Renormalization of QED via Flow Equations. Phys. Lett. B, to appear: Keller, G., Kopper, C.: preprint in preparation · Zbl 0755.60100
[18] Hurd, T.: Commun. Math. Phys.124, 153 (1989) · Zbl 0702.58085
[19] Keller, G., Kopper, C.: preprint in preparation
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.