×

zbMATH — the first resource for mathematics

User’s guide to viscosity solutions of second order partial differential equations. (English) Zbl 0755.35015
Summary: The notion of viscosity solution of scalar fully nonlinear partial differential equations of second order provides a framework in which startling comparison and uniqueness theorems, existence theorems, and theorems about continuous dependence may now be proved by very efficient and striking arguments. The range of important applications of these results is enormous. This article is a self-contained exposition of the basic theory of viscosity solutions.

MSC:
35D05 Existence of generalized solutions of PDE (MSC2000)
35J60 Nonlinear elliptic equations
35K55 Nonlinear parabolic equations
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35B50 Maximum principles in context of PDEs
35B25 Singular perturbations in context of PDEs
35K65 Degenerate parabolic equations
35F20 Nonlinear first-order PDEs
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
35J25 Boundary value problems for second-order elliptic equations
35K20 Initial-boundary value problems for second-order parabolic equations
35K15 Initial value problems for second-order parabolic equations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] A.D. Aleksandrov, Almost everywhere existence of the second differential of a convex function and some properties of convex functions, Leningrad. Univ. Ann. (Math. Ser.) 37 (1939), 3-35. (Russian)
[2] -, Uniqueness conditions and estimates for the solution of the Dirichlet problem, Amer. Math. Soc. Transl., vol. 68, Amer. Math. Soc., Providence, RI, 1968, pp. 89-119. · Zbl 0177.36802
[3] -, Majorization of solutions of second-order linear equations, Amer. Math. Soc. Transl., vol. 68, Amer. Math. Soc., Providence, RI, 1968, pp. 120-143. · Zbl 0177.36803
[4] B. Alziary de Roquefort, Jeux différentiels et approximation numérique de fonctions valeur. II. Étude numérique, RAIRO Modél. Math. Anal. Numér. 25 (1991), no. 5, 535 – 560 (French, with English summary). · Zbl 0734.90132
[5] Sadakazu Aizawa and Yoshihito Tomita, On unbounded viscosity solutions of a semilinear second order elliptic equation, Funkcial. Ekvac. 31 (1988), no. 1, 147 – 160. · Zbl 0679.35032
[6] I. Ja. Bakel\(^{\prime}\)man, On the theory of quasilinear elliptic equations, Sibirsk. Mat. Ž. 2 (1961), 179 – 186 (Russian).
[7] Viorel Barbu, Hamilton-Jacobi equations and nonlinear control problems, J. Math. Anal. Appl. 120 (1986), no. 2, 494 – 509. · Zbl 0606.49020 · doi:10.1016/0022-247X(86)90171-X · doi.org
[8] Viorel Barbu, The dynamic programming equation for the time-optimal control problem in infinite dimensions, SIAM J. Control Optim. 29 (1991), no. 2, 445 – 456. · Zbl 0737.49022 · doi:10.1137/0329024 · doi.org
[9] V. Barbu, E. N. Barron, and R. Jensen, The necessary conditions for optimal control in Hilbert spaces, J. Math. Anal. Appl. 133 (1988), no. 1, 151 – 162. · Zbl 0667.49017 · doi:10.1016/0022-247X(88)90372-1 · doi.org
[10] Viorel Barbu and Giuseppe Da Prato, Hamilton-Jacobi equations in Hilbert spaces, Research Notes in Mathematics, vol. 86, Pitman (Advanced Publishing Program), Boston, MA, 1983. · Zbl 0471.49026
[11] Martino Bardi, An asymptotic formula for the Green’s function of an elliptic operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 4, 569 – 586 (1988). · Zbl 0672.35016
[12] M. Bardi and L. C. Evans, On Hopf’s formulas for solutions of Hamilton-Jacobi equations, Nonlinear Anal. 8 (1984), no. 11, 1373 – 1381. · Zbl 0569.35011 · doi:10.1016/0362-546X(84)90020-8 · doi.org
[13] Martino Bardi and Benoît Perthame, Exponential decay to stable states in phase transitions via a double log-transformation, Comm. Partial Differential Equations 15 (1990), no. 12, 1649 – 1669. · Zbl 0732.34022 · doi:10.1080/03605309908820742 · doi.org
[14] G. Barles, Existence results for first order Hamilton Jacobi equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 5, 325 – 340 (English, with French summary). · Zbl 0574.70019
[15] -, Remarques sur des résultats d’existence pour les équations de Hamilton-Jacobi du premier ordre, Ann. I. H. Poincaré Anal. Non Linéaire 2 (1985), 21-33. · Zbl 0573.35010
[16] -, Remark on a flame propagation model, Rapport INRIA, no. 464, 1985.
[17] G. Barles, Interior gradient bounds for the mean curvature equation by viscosity solutions methods, Differential Integral Equations 4 (1991), no. 2, 263 – 275. · Zbl 0735.35020
[18] G. Barles, A weak Bernstein method for fully nonlinear elliptic equations, Differential Integral Equations 4 (1991), no. 2, 241 – 262. · Zbl 0733.35014
[19] G. Barles, Uniqueness and regularity results for first-order Hamilton-Jacobi equations, Indiana Univ. Math. J. 39 (1990), no. 2, 443 – 466. · Zbl 0709.35024 · doi:10.1512/iumj.1990.39.39024 · doi.org
[20] G. Barles, Regularity results for first order Hamilton-Jacobi equations, Differential Integral Equations 3 (1990), no. 1, 103 – 125. · Zbl 0739.35012
[21] G. Barles, Fully nonlinear Neumann type boundary conditions for second-order elliptic and parabolic equations, J. Differential Equations 106 (1993), no. 1, 90 – 106. · Zbl 0786.35051 · doi:10.1006/jdeq.1993.1100 · doi.org
[22] G. Barles, L. Bronsard, and P. E. Souganidis, Front propagation for reaction-diffusion equations of bistable type, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), no. 5, 479 – 496 (English, with English and French summaries). · Zbl 0794.35076
[23] G. Barles, L. C. Evans, and P. E. Souganidis, Wavefront propagation for reaction-diffusion systems of PDE, Duke Math. J. 61 (1990), no. 3, 835 – 858. · Zbl 0749.35015 · doi:10.1215/S0012-7094-90-06132-0 · doi.org
[24] G. Barles and P.-L. Lions, Fully nonlinear Neumann type boundary conditions for first-order Hamilton-Jacobi equations, Nonlinear Anal. 16 (1991), no. 2, 143 – 153. · Zbl 0736.35023 · doi:10.1016/0362-546X(91)90165-W · doi.org
[25] G. Barles and B. Perthame, Discontinuous solutions of deterministic optimal stopping time problems, RAIRO Modél. Math. Anal. Numér. 21 (1987), no. 4, 557 – 579 (English, with French summary). · Zbl 0629.49017
[26] G. Barles and B. Perthame, Exit time problems in optimal control and vanishing viscosity method, SIAM J. Control Optim. 26 (1988), no. 5, 1133 – 1148 (English, with French summary). · Zbl 0674.49027 · doi:10.1137/0326063 · doi.org
[27] -, Comparison principle for Dirichlet-type H. J. equations and singular perturbations of degenerate elliptic equations, Appl. Math. Optim. 21 (1990), 21-44. · Zbl 0691.49028
[28] G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal. 4 (1991), no. 3, 271 – 283. · Zbl 0729.65077
[29] E. N. Barron, Differential games with maximum cost, Nonlinear Anal. 14 (1990), no. 11, 971 – 989. · Zbl 0708.90104 · doi:10.1016/0362-546X(90)90113-U · doi.org
[30] E. N. Barron and H. Ishii, The Bellman equation for minimizing the maximum cost, Nonlinear Anal. 13 (1989), no. 9, 1067 – 1090. · Zbl 0691.49030 · doi:10.1016/0362-546X(89)90096-5 · doi.org
[31] Emmanuel Nicholas Barron and Robert Jensen, The Pontryagin maximum principle from dynamic programming and viscosity solutions to first-order partial differential equations, Trans. Amer. Math. Soc. 298 (1986), no. 2, 635 – 641. · Zbl 0618.49011
[32] Emmanuel Nicholas Barron and Robert Jensen, Generalized viscosity solutions for Hamilton-Jacobi equations with time-measurable Hamiltonians, J. Differential Equations 68 (1987), no. 1, 10 – 21. · Zbl 0632.35008 · doi:10.1016/0022-0396(87)90183-5 · doi.org
[33] E. N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians, Comm. Partial Differential Equations 15 (1990), no. 12, 1713 – 1742. · Zbl 0732.35014 · doi:10.1080/03605309908820745 · doi.org
[34] E. N. Barron and R. Jensen, Optimal control and semicontinuous viscosity solutions, Proc. Amer. Math. Soc. 113 (1991), no. 2, 397 – 402. · Zbl 0741.49010
[35] Emmanuel Nicholas Barron and Robert Jensen, A stochastic control approach to the pricing of options, Math. Oper. Res. 15 (1990), no. 1, 49 – 79. · Zbl 0706.90004 · doi:10.1287/moor.15.1.49 · doi.org
[36] Stanley H. Benton Jr., The Hamilton-Jacobi equation, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1977. A global approach; Mathematics in Science and Engineering, Vol. 131. · Zbl 0418.49001
[37] Jean-Michel Bony, Principe du maximum dans les espaces de Sobolev, C. R. Acad. Sci. Paris Sér. A-B 265 (1967), A333 – A336 (French). · Zbl 0164.16803
[38] H. Brezis, Operateurs Maximaux Monotones et semigroupes de contractions dans les espaces de Hilbert, North Holland, Amsterdam, 1973.
[39] Luis A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math. (2) 130 (1989), no. 1, 189 – 213. · Zbl 0692.35017 · doi:10.2307/1971480 · doi.org
[40] Piermarco Cannarsa and Halil Mete Soner, On the singularities of the viscosity solutions to Hamilton-Jacobi-Bellman equations, Indiana Univ. Math. J. 36 (1987), no. 3, 501 – 524. · Zbl 0612.70016 · doi:10.1512/iumj.1987.36.36028 · doi.org
[41] Piermarco Cannarsa and Halil Mete Soner, Generalized one-sided estimates for solutions of Hamilton-Jacobi equations and applications, Nonlinear Anal. 13 (1989), no. 3, 305 – 323. · Zbl 0681.49030 · doi:10.1016/0362-546X(89)90056-4 · doi.org
[42] Piermarco Cannarsa, Fausto Gozzi, and Halil Mete Soner, A boundary value problem for Hamilton-Jacobi equations in Hilbert spaces, Appl. Math. Optim. 24 (1991), no. 2, 197 – 220. · Zbl 0745.49025 · doi:10.1007/BF01447742 · doi.org
[43] I. Cappuzzo-Dolcetta and L. C. Evans, Optimal switching for ordinary differential equations, SIAM J. Optim. Control 22 (1988), 1133-1148.
[44] I. Capuzzo-Dolcetta and P.-L. Lions, Hamilton-Jacobi equations with state constraints, Trans. Amer. Math. Soc. 318 (1990), no. 2, 643 – 683. · Zbl 0702.49019
[45] Yun Gang Chen, Yoshikazu Giga, and Shun’ichi Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom. 33 (1991), no. 3, 749 – 786. · Zbl 0696.35087
[46] Michael G. Crandall, Semidifferentials, quadratic forms and fully nonlinear elliptic equations of second order, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), no. 6, 419 – 435 (English, with French summary). · Zbl 0734.35033
[47] M. G. Crandall, L. C. Evans, and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282 (1984), no. 2, 487 – 502. · Zbl 0543.35011
[48] Michael G. Crandall and Hitoshi Ishii, The maximum principle for semicontinuous functions, Differential Integral Equations 3 (1990), no. 6, 1001 – 1014. · Zbl 0723.35015
[49] Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions, Uniqueness of viscosity solutions of Hamilton-Jacobi equations revisited, J. Math. Soc. Japan 39 (1987), no. 4, 581 – 596. · Zbl 0644.35016 · doi:10.2969/jmsj/03940581 · doi.org
[50] Michael G. Crandall and Pierre-Louis Lions, Condition d’unicité pour les solutions généralisées des équations de Hamilton-Jacobi du premier ordre, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 3, 183 – 186 (French, with English summary). · Zbl 0469.49023
[51] Michael G. Crandall and Pierre-Louis Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), no. 1, 1 – 42. · Zbl 0599.35024
[52] M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations, Math. Comp. 43 (1984), no. 167, 1 – 19. · Zbl 0556.65076
[53] Michael G. Crandall and Pierre-Louis Lions, On existence and uniqueness of solutions of Hamilton-Jacobi equations, Nonlinear Anal. 10 (1986), no. 4, 353 – 370. · Zbl 0603.35016 · doi:10.1016/0362-546X(86)90133-1 · doi.org
[54] Michael G. Crandall and Pierre-Louis Lions, Remarks on the existence and uniqueness of unbounded viscosity solutions of Hamilton-Jacobi equations, Illinois J. Math. 31 (1987), no. 4, 665 – 688. · Zbl 0678.35009
[55] -, Hamilton-Jacobi equations in infinite dimensions, Part I. Uniqueness of viscosity solutions, J. Func. Anal. 62 (1985), 379-396; Part II. Existence of viscosity solutions 65 (1986), 368-405; Part III 68 (1986), 214-247; Part IV. Unbounded linear terms 90 (1990), 237-283; Part V. B-continuous solutions, 97 (1991), 417-465.
[56] Michael G. Crandall and P.-L. Lions, Quadratic growth of solutions of fully nonlinear second order equations in \?\(^{n}\), Differential Integral Equations 3 (1990), no. 4, 601 – 616. · Zbl 0735.35073
[57] Michael G. Crandall, Pierre-Louis Lions, and Panagiotis E. Souganidis, Maximal solutions and universal bounds for some partial differential equations of evolution, Arch. Rational Mech. Anal. 105 (1989), no. 2, 163 – 190. · Zbl 0706.35067 · doi:10.1007/BF00250835 · doi.org
[58] Michael G. Crandall and Richard Newcomb, Viscosity solutions of Hamilton-Jacobi equations at the boundary, Proc. Amer. Math. Soc. 94 (1985), no. 2, 283 – 290. · Zbl 0575.35008
[59] M. G. Crandall, R. Newcomb, and Y. Tomita, Existence and uniqueness of viscosity solutions of degenerate quasilinear elliptic equations in \( {\mathbb{R}^n}\), Appl. Anal. 34 (1989), 1-23. · Zbl 0705.35044
[60] Paul Dupuis and Hitoshi Ishii, On oblique derivative problems for fully nonlinear second-order elliptic partial differential equations on nonsmooth domains, Nonlinear Anal. 15 (1990), no. 12, 1123 – 1138. · Zbl 0736.35044 · doi:10.1016/0362-546X(90)90048-L · doi.org
[61] Paul Dupuis and Hitoshi Ishii, On oblique derivative problems for fully nonlinear second-order elliptic PDEs on domains with corners, Hokkaido Math. J. 20 (1991), no. 1, 135 – 164. · Zbl 0741.35019 · doi:10.14492/hokmj/1381413798 · doi.org
[62] Paul Dupuis, Hitoshi Ishii, and H. Mete Soner, A viscosity solution approach to the asymptotic analysis of queueing systems, Ann. Probab. 18 (1990), no. 1, 226 – 255. · Zbl 0715.60035
[63] Hans Engler and Suzanne M. Lenhart, Viscosity solutions for weakly coupled systems of Hamilton-Jacobi equations, Proc. London Math. Soc. (3) 63 (1991), no. 1, 212 – 240. · Zbl 0704.35030 · doi:10.1112/plms/s3-63.1.212 · doi.org
[64] Lawrence C. Evans, A convergence theorem for solutions of nonlinear second-order elliptic equations, Indiana Univ. Math. J. 27 (1978), no. 5, 875 – 887. · Zbl 0408.35037 · doi:10.1512/iumj.1978.27.27059 · doi.org
[65] Lawrence C. Evans, On solving certain nonlinear partial differential equations by accretive operator methods, Israel J. Math. 36 (1980), no. 3-4, 225 – 247. · Zbl 0454.35038 · doi:10.1007/BF02762047 · doi.org
[66] Lawrence C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), no. 3-4, 359 – 375. · Zbl 0679.35001 · doi:10.1017/S0308210500018631 · doi.org
[67] Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. · Zbl 0804.28001
[68] L. C. Evans and H. Ishii, A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 1, 1 – 20 (English, with French summary). · Zbl 0601.60076
[69] L. C. Evans, M. Soner, and P. E. Souganidis, The Allen-Cahn equation and generalized motion by mean curvature, preprint. · Zbl 0801.35045
[70] L. C. Evans and P. E. Souganidis, Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations, Indiana Univ. Math. J. 33 (1984), no. 5, 773 – 797. · Zbl 1169.91317 · doi:10.1512/iumj.1984.33.33040 · doi.org
[71] L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations, Indiana Univ. Math. J. 38 (1989), no. 1, 141 – 172. · Zbl 0692.35014 · doi:10.1512/iumj.1989.38.38007 · doi.org
[72] L. C. Evans and J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geom. 33 (1991), no. 3, 635 – 681. · Zbl 0726.53029
[73] M. Falcone, A numerical approach to the infinite horizon problem of deterministic control theory, Appl. Math. Optim. 15 (1987), no. 1, 1 – 13. · Zbl 0715.49023 · doi:10.1007/BF01442644 · doi.org
[74] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. · Zbl 0176.00801
[75] Wendell H. Fleming and Raymond W. Rishel, Deterministic and stochastic optimal control, Springer-Verlag, Berlin-New York, 1975. Applications of Mathematics, No. 1. · Zbl 0323.49001
[76] Wendell H. Fleming and Panagiotis E. Souganidis, PDE-viscosity solution approach to some problems of large deviations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986), no. 2, 171 – 192. · Zbl 0622.60032
[77] W. H. Fleming and P. E. Souganidis, On the existence of value functions of two-player, zero-sum stochastic differential games, Indiana Univ. Math. J. 38 (1989), no. 2, 293 – 314. · Zbl 0686.90049 · doi:10.1512/iumj.1989.38.38015 · doi.org
[78] Halina Frankowska, On the single valuedness of Hamilton-Jacobi operators, Nonlinear Anal. 10 (1986), no. 12, 1477 – 1483. · Zbl 0535.35010 · doi:10.1016/0362-546X(86)90117-3 · doi.org
[79] Y. Giga, S. Goto, H. Ishii, and M.-H. Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, Indiana Univ. Math. J. 40 (1991), no. 2, 443 – 470. · Zbl 0836.35009 · doi:10.1512/iumj.1991.40.40023 · doi.org
[80] Yoshikazu Giga, Shun’ichi Goto, and Hitoshi Ishii, Global existence of weak solutions for interface equations coupled with diffusion equations, SIAM J. Math. Anal. 23 (1992), no. 4, 821 – 835. · Zbl 0754.35061 · doi:10.1137/0523043 · doi.org
[81] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. · Zbl 0562.35001
[82] Hitoshi Ishii, Remarks on existence of viscosity solutions of Hamilton-Jacobi equations, Bull. Fac. Sci. Engrg. Chuo Univ. 26 (1983), 5 – 24. · Zbl 0546.35042
[83] Hitoshi Ishii, Uniqueness of unbounded viscosity solution of Hamilton-Jacobi equations, Indiana Univ. Math. J. 33 (1984), no. 5, 721 – 748. · Zbl 0551.49016 · doi:10.1512/iumj.1984.33.33038 · doi.org
[84] Hitoshi Ishii, Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets, Bull. Fac. Sci. Engrg. Chuo Univ. 28 (1985), 33 – 77. · Zbl 0937.35505
[85] Hitoshi Ishii, Existence and uniqueness of solutions of Hamilton-Jacobi equations, Funkcial. Ekvac. 29 (1986), no. 2, 167 – 188. · Zbl 0614.35011
[86] Hitoshi Ishii, Perron’s method for Hamilton-Jacobi equations, Duke Math. J. 55 (1987), no. 2, 369 – 384. · Zbl 0697.35030 · doi:10.1215/S0012-7094-87-05521-9 · doi.org
[87] Hitoshi Ishii, A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi equations of eikonal type, Proc. Amer. Math. Soc. 100 (1987), no. 2, 247 – 251. · Zbl 0644.35017
[88] Hitoshi Ishii, Representation of solutions of Hamilton-Jacobi equations, Nonlinear Anal. 12 (1988), no. 2, 121 – 146. · Zbl 0687.35025 · doi:10.1016/0362-546X(88)90030-2 · doi.org
[89] Hitoshi Ishii, On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDEs, Comm. Pure Appl. Math. 42 (1989), no. 1, 15 – 45. · Zbl 0645.35025 · doi:10.1002/cpa.3160420103 · doi.org
[90] Hitoshi Ishii, A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 16 (1989), no. 1, 105 – 135. · Zbl 0701.35052
[91] Hitoshi Ishii, Fully nonlinear oblique derivative problems for nonlinear second-order elliptic PDEs, Duke Math. J. 62 (1991), no. 3, 633 – 661. · Zbl 0733.35020 · doi:10.1215/S0012-7094-91-06228-9 · doi.org
[92] Hitoshi Ishii, Perron’s method for monotone systems of second-order elliptic partial differential equations, Differential Integral Equations 5 (1992), no. 1, 1 – 24. · Zbl 0770.35017
[93] Hitoshi Ishii and Shigeaki Koike, Remarks on elliptic singular perturbation problems, Appl. Math. Optim. 23 (1991), no. 1, 1 – 15. · Zbl 0724.35009 · doi:10.1007/BF01442390 · doi.org
[94] Hitoshi Ishii and Shigeaki Koike, Viscosity solutions of a system of nonlinear second-order elliptic PDEs arising in switching games, Funkcial. Ekvac. 34 (1991), no. 1, 143 – 155. · Zbl 0789.35062
[95] Hitoshi Ishii and Shigeaki Koike, Viscosity solutions for monotone systems of second-order elliptic PDEs, Comm. Partial Differential Equations 16 (1991), no. 6-7, 1095 – 1128. · Zbl 0742.35022 · doi:10.1080/03605309108820791 · doi.org
[96] H. Ishii and P.-L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differential Equations 83 (1990), no. 1, 26 – 78. · Zbl 0708.35031 · doi:10.1016/0022-0396(90)90068-Z · doi.org
[97] Hitoshi Ishii and Naoki Yamada, A remark on a system of inequalities with bilateral obstacles, Nonlinear Anal. 13 (1989), no. 11, 1295 – 1301. · Zbl 0718.49010 · doi:10.1016/0362-546X(89)90013-8 · doi.org
[98] A. V. Ivanov, Quasilinear degenerate and nonuniformly elliptic and parabolic equations of second order, Proc. Steklov Inst. Math. 1(160) (1984), xi+287. A translation of Trudy Mat. Inst. Steklov 160 (1982); Translated from the Russian by J. R. Schulenberger. · Zbl 0517.35001
[99] Shigeaki Koike, On the rate of convergence of solutions in singular perturbation problems, J. Math. Anal. Appl. 157 (1991), no. 1, 243 – 253. · Zbl 0747.35001 · doi:10.1016/0022-247X(91)90147-R · doi.org
[100] Shigeaki Koike, An asymptotic formula for solutions of Hamilton-Jacobi-Bellman equations, Nonlinear Anal. 11 (1987), no. 3, 429 – 436. · Zbl 0623.49016 · doi:10.1016/0362-546X(87)90056-3 · doi.org
[101] Robert Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rational Mech. Anal. 101 (1988), no. 1, 1 – 27. · Zbl 0708.35019 · doi:10.1007/BF00281780 · doi.org
[102] Robert Jensen, Uniqueness criteria for viscosity solutions of fully nonlinear elliptic partial differential equations, Indiana Univ. Math. J. 38 (1989), no. 3, 629 – 667. · Zbl 0838.35037 · doi:10.1512/iumj.1989.38.38030 · doi.org
[103] -, Local quadratic growth estimates for elliptic obstacle problems, preprint.
[104] R. Jensen, P.-L. Lions, and P. E. Souganidis, A uniqueness result for viscosity solutions of second order fully nonlinear partial differential equations, Proc. Amer. Math. Soc. 102 (1988), no. 4, 975 – 978. · Zbl 0662.35048
[105] R. Jensen and P. E. Souganidis, A regularity result for viscosity solutions of Hamilton-Jacobi equations in one space dimension, Trans. Amer. Math. Soc. 301 (1987), no. 1, 137 – 147. · Zbl 0657.35083
[106] J. J. Kohn and L. Nirenberg, Degenerate elliptic-parabolic equations of second order, Comm. Pure Appl. Math. 20 (1967), 797 – 872. · Zbl 0153.14503 · doi:10.1002/cpa.3160200410 · doi.org
[107] S. N. Kruzkov, First order quasilinear equations in several independent variables, Math. USSR-Sb. 10 (1970), 217-243. · Zbl 0215.16203
[108] N. V. Krylov, Controlled diffusion processes, Applications of Mathematics, vol. 14, Springer-Verlag, New York-Berlin, 1980. Translated from the Russian by A. B. Aries. · Zbl 0436.93055
[109] N. V. Krylov, Nonlinear elliptic and parabolic equations of the second order, Mathematics and its Applications (Soviet Series), vol. 7, D. Reidel Publishing Co., Dordrecht, 1987. Translated from the Russian by P. L. Buzytsky [P. L. Buzytskiĭ]. · Zbl 0619.35004
[110] J.-M. Lasry and P.-L. Lions, A remark on regularization in Hilbert spaces, Israel J. Math. 55 (1986), no. 3, 257 – 266. · Zbl 0631.49018 · doi:10.1007/BF02765025 · doi.org
[111] J.-M. Lasry and P.-L. Lions, Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem, Math. Ann. 283 (1989), no. 4, 583 – 630. · Zbl 0688.49026 · doi:10.1007/BF01442856 · doi.org
[112] Suzanne Lenhart, Integro-differential operators associated with diffusion processes with jumps, Appl. Math. Optim. 9 (1982/83), no. 2, 177 – 191. · Zbl 0513.45014 · doi:10.1007/BF01460124 · doi.org
[113] Suzanne M. Lenhart, Viscosity solutions for weakly coupled systems of first-order partial differential equations, J. Math. Anal. Appl. 131 (1988), no. 1, 180 – 193. · Zbl 0661.35011 · doi:10.1016/0022-247X(88)90199-0 · doi.org
[114] Suzanne M. Lenhart and Naoki Yamada, Perron’s method for viscosity solutions associated with piecewise-deterministic processes, Funkcial. Ekvac. 34 (1991), no. 1, 173 – 186. · Zbl 0731.45013
[115] -, Viscosity solutions associated with switching game for piecewise-deterministic processes, preprint. · Zbl 0769.49025
[116] Pierre-Louis Lions, Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics, vol. 69, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. · Zbl 0497.35001
[117] P.-L. Lions, On the Hamilton-Jacobi-Bellman equations, Acta Appl. Math. 1 (1983), no. 1, 17 – 41. · Zbl 0594.93069 · doi:10.1007/BF02433840 · doi.org
[118] -, Some recent results in the optimal control of diffusion processes: Stochastic analysis, Proceedings of the Taniguchi International Symposium on Stochastic Analysis (Katata and Kyoto 1982) Kinokuniya, Tokyo, 1984.
[119] -, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. Part 1: The dynamic programming principle and applications and Part 2: Viscosity solutions and uniqueness, Comm. Partial Differential Equations 8 (1983), 1101-1174 and 1229-1276. · Zbl 0716.49022
[120] P.-L. Lions, A remark on Bony maximum principle, Proc. Amer. Math. Soc. 88 (1983), no. 3, 503 – 508. · Zbl 0525.35028
[121] P.-L. Lions, Neumann type boundary conditions for Hamilton-Jacobi equations, Duke Math. J. 52 (1985), no. 4, 793 – 820. · Zbl 0599.35025 · doi:10.1215/S0012-7094-85-05242-1 · doi.org
[122] P.-L. Lions, Regularizing effects for first-order Hamilton-Jacobi equations, Applicable Anal. 20 (1985), no. 3-4, 283 – 307. · Zbl 0551.35014 · doi:10.1080/00036818508839575 · doi.org
[123] P.-L. Lions, Équations de Hamilton-Jacobi et solutions de viscosité, Ennio De Giorgi colloquium (Paris, 1983) Res. Notes in Math., vol. 125, Pitman, Boston, MA, 1985, pp. 83 – 97 (French).
[124] -, Some properties of the viscosity semigroups of Hamilton-Jacobi equations, Nonlinear Differential Equations and Applications, Pitman, London, 1988.
[125] P.-L. Lions, Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. I. The case of bounded stochastic evolutions, Acta Math. 161 (1988), no. 3-4, 243 – 278. · Zbl 0757.93082 · doi:10.1007/BF02392299 · doi.org
[126] -, Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part II: Optimal Control of Zakai’s Equation, Stochastic Partial Differential Equations and Applications II, Lecture Notes in Math., vol. 1390, Springer, Berlin, 1989. Proceedings of the International Conference on Infinite Dimensional Stochastic Differential Equations, Trento, Springer, Berlin, 1988.
[127] P.-L. Lions, Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. III. Uniqueness of viscosity solutions for general second-order equations, J. Funct. Anal. 86 (1989), no. 1, 1 – 18. · Zbl 0757.93084 · doi:10.1016/0022-1236(89)90062-1 · doi.org
[128] P. L. Lions, G. Papanicolau, and S. R. S. Varadhan, Homogenization of Hamilton-Jacobi equations, preprint.
[129] P.-L. Lions and B. Perthame, Remarks on Hamilton-Jacobi equations with measurable time-dependent Hamiltonians, Nonlinear Anal. 11 (1987), no. 5, 613 – 621. · Zbl 0688.35052 · doi:10.1016/0362-546X(87)90076-9 · doi.org
[130] P.-L. Lions and Makiko Nisio, A uniqueness result for the semigroup associated with the Hamilton-Jacobi-Bellman operator, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), no. 7, 273 – 276. · Zbl 0516.93065
[131] P.-L. Lions and J.-C. Rochet, Hopf formula and multitime Hamilton-Jacobi equations, Proc. Amer. Math. Soc. 96 (1986), no. 1, 79 – 84. · Zbl 0597.35079
[132] P.-L. Lions and P. E. Souganidis, Viscosity solutions of second-order equations, stochastic control and stochastic differential games, Stochastic differential systems, stochastic control theory and applications (Minneapolis, Minn., 1986) IMA Vol. Math. Appl., vol. 10, Springer, New York, 1988, pp. 293 – 309. · Zbl 0825.49042 · doi:10.1007/978-1-4613-8762-6_19 · doi.org
[133] Pierre-Louis Lions and Panagiotis Souganidis, Convergence of MUSCL type methods for scalar conservation laws, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 5, 259 – 264 (English, with French summary). · Zbl 0712.65082
[134] P.-L. Lions, P. E. Souganidis, and J. L. Vázquez, The relation between the porous medium and the eikonal equations in several space dimensions, Rev. Mat. Iberoamericana 3 (1987), no. 3-4, 275 – 310. · Zbl 0697.35012 · doi:10.4171/RMI/51 · doi.org
[135] F. Mignot, Contrôle dans les inéquations variationelles elliptiques, J. Functional Analysis 22 (1976), no. 2, 130 – 185 (French). · Zbl 0364.49003
[136] R. Newcomb, Existence and correspondence of value functions and viscosity solutions of Hamilton-Jacobi equations Univ. of Wisconsin-Madison, 1988.
[137] Diana Nunziante, Uniqueness of viscosity solutions of fully nonlinear second order parabolic equations with discontinuous time-dependence, Differential Integral Equations 3 (1990), no. 1, 77 – 91. · Zbl 0738.35026
[138] -, Existence and uniqueness of unbounded viscosity solutions of parabolic equations with discontinuous time-dependence, preprint. · Zbl 0782.35037
[139] O. A. Oleĭnik and E. V. Radekvic, Second order equations with nonnegative characteristic form, American Mathematical Society, Providence, RI, 1973.
[140] Stanley Osher and James A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988), no. 1, 12 – 49. · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2 · doi.org
[141] B. Perthame, Perturbed dynamical systems with an attracting singularity and weak viscosity limits in Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 317 (1990), no. 2, 723 – 748. · Zbl 0714.35008
[142] Benoît Perthame and Richard Sanders, The Neumann problem for nonlinear second order singular perturbation problems, SIAM J. Math. Anal. 19 (1988), no. 2, 295 – 311. · Zbl 0664.35003 · doi:10.1137/0519022 · doi.org
[143] Carlo Pucci, Su una limitazione per soluzioni di equazioni ellittiche, Boll. Un. Mat. Ital. (3) 21 (1966), 228 – 233 (Italian, with English summary). · Zbl 0149.07401
[144] E. Rouy and A. Tourin, A viscosity solution approach to shape–from shading, preprint. · Zbl 0754.65069
[145] Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. · Zbl 0925.00005
[146] Moto-Hiko Sato, Comparison principle for singular degenerate elliptic equations on unbounded domains, Proc. Japan Acad. Ser. A Math. Sci. 66 (1990), no. 8, 252 – 256. · Zbl 0731.35003
[147] Naoki Yamada, Viscosity solutions for a system of elliptic inequalities with bilateral obstacles, Funkcial. Ekvac. 30 (1987), no. 2-3, 417 – 425. · Zbl 0639.35032
[148] Sayah Awatif, Équations d’Hamilton-Jacobi du premier ordre avec termes intégro-différentiels. I. Unicité des solutions de viscosité, Comm. Partial Differential Equations 16 (1991), no. 6-7, 1057 – 1074 (French). , https://doi.org/10.1080/03605309108820789 Sayah Awatif, Équations d’Hamilton-Jacobi du premier ordre avec termes intégro-différentiels. II. Existence de solutions de viscosité, Comm. Partial Differential Equations 16 (1991), no. 6-7, 1075 – 1093 (French). · Zbl 0742.45005 · doi:10.1080/03605309108820790 · doi.org
[149] Halil Mete Soner, Optimal control with state-space constraint. I, SIAM J. Control Optim. 24 (1986), no. 3, 552 – 561. · Zbl 0597.49023 · doi:10.1137/0324032 · doi.org
[150] Halil Mete Soner, Optimal control with state-space constraint. II, SIAM J. Control Optim. 24 (1986), no. 6, 1110 – 1122. · Zbl 0619.49013 · doi:10.1137/0324067 · doi.org
[151] H. Mete Soner, On the Hamilton-Jacobi-Bellman equations in Banach spaces, J. Optim. Theory Appl. 57 (1988), no. 3, 429 – 437. · Zbl 0622.49010 · doi:10.1007/BF02346162 · doi.org
[152] -, Motion of a set by the curvature of its mean boundary, preprint.
[153] Panagiotis E. Souganidis, Max-min representations and product formulas for the viscosity solutions of Hamilton-Jacobi equations with applications to differential games, Nonlinear Anal. 9 (1985), no. 3, 217 – 257. · Zbl 0526.35018 · doi:10.1016/0362-546X(85)90062-8 · doi.org
[154] Panagiotis E. Souganidis, Existence of viscosity solutions of Hamilton-Jacobi equations, J. Differential Equations 56 (1985), no. 3, 345 – 390. · Zbl 0506.35020 · doi:10.1016/0022-0396(85)90084-1 · doi.org
[155] Panagiotis E. Souganidis, Approximation schemes for viscosity solutions of Hamilton-Jacobi equations, J. Differential Equations 59 (1985), no. 1, 1 – 43. · Zbl 0536.70020 · doi:10.1016/0022-0396(85)90136-6 · doi.org
[156] P. E. Souganidis, A remark about viscosity solutions of Hamilton-Jacobi equations at the boundary, Proc. Amer. Math. Soc. 96 (1986), no. 2, 323 – 329. · Zbl 0598.35066
[157] Daniel Tataru, Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl. 163 (1992), no. 2, 345 – 392. · Zbl 0757.35034 · doi:10.1016/0022-247X(92)90256-D · doi.org
[158] Neil S. Trudinger, Comparison principles and pointwise estimates for viscosity solutions of nonlinear elliptic equations, Rev. Mat. Iberoamericana 4 (1988), no. 3-4, 453 – 468. · Zbl 0695.35007 · doi:10.4171/RMI/80 · doi.org
[159] Neil S. Trudinger, Hölder gradient estimates for fully nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), no. 1-2, 57 – 65. · Zbl 0653.35026 · doi:10.1017/S0308210500026512 · doi.org
[160] Neil S. Trudinger, On the twice differentiability of viscosity solutions of nonlinear elliptic equations, Bull. Austral. Math. Soc. 39 (1989), no. 3, 443 – 447. · Zbl 0706.35031 · doi:10.1017/S0004972700003361 · doi.org
[161] J. L. Vila and T. Zariphopolou, Optimal consumption and portfolio choice with borrowing constraints, preprint.
[162] Marianne Akian, José Luis Menaldi, and Agnès Sulem, On an investment-consumption model with transaction costs, SIAM J. Control Optim. 34 (1996), no. 1, 329 – 364. · Zbl 1035.91505 · doi:10.1137/S0363012993247159 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.