×

zbMATH — the first resource for mathematics

Amalgamation and interpolation in normal modal logics. (English) Zbl 0754.03013
This paper is a survey of results on interpolation in propositional normal modal logics. Interpolation properties of these logics are closely connected with amalgamation properties of varieties of modal algebras. Therefore, the results on interpolation are also reformulated in terms of amalgamation.

MSC:
03B45 Modal logic (including the logic of norms)
03G25 Other algebras related to logic
08B99 Varieties
03C40 Interpolation, preservation, definability
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P.D. Bacsich, Amalgamation properties and interpolation theorems for equational theories, Algebra Universalis 5, 1 (1975), pp. 44-55. · Zbl 0324.02036
[2] W. J. Blok, Pretabular varieties of modal algebras, Studia Logica 30, 2/3 (1980), pp. 101-124. · Zbl 0457.03018
[3] G. Boolos, On systems of modal logic with provability interpretations, Theoria 45, 1 (1980), pp. 7-18. · Zbl 0473.03010
[4] J. Czelakowski, Logical matrices and the amalgamation property, Studia Logica 41, 4 (1982), pp. 329-341. · Zbl 0549.03014
[5] K. Fine, Failures of the interpolation lemma in quantified modal logic, Journal of Symbolic Logic 44, 2 (1979), pp. 201-206. · Zbl 0415.03015
[6] D. Gabbay, Craig’s interpolation theorem for modal logics, in Conference in Mathematical Logic ? London ’70 (1972), pp. 111-127, Springer, Berlin.
[7] R. Goldblatt, Arithmetical necessity, provability and intuitionistic logic, Theoria 44 (1978), pp. 38-46. · Zbl 0409.03011
[8] S. Kripke, Semantical analysis of modal logic I. Normal modal propositional calculi, Zeitschrift f?r mathematische Logik und Grundlagen der Mathematik 9 (1963), pp. 67-96. · Zbl 0118.01305
[9] A. V. Kuznetsov and A. Y. Muravitski, Provability as modality, (in Russian), in Aktualnye problemy logiki i metodologii nauki (1980), pp. 193-229, Naukova dumka, Kyev. · Zbl 0535.03008
[10] E. Lemmon, Algebraic semantics for modal logics. I, Journal of Symbolic Logic 31 (1966), pp. 46-65. II, Journal of Symbolic Logic, 31 (1966), pp. 191-218 · Zbl 0147.24805
[11] D. Makinson, On some completeness theorems in modal logic, Zeitschrift f?r mathematische Logik und Grundlagen der Mathematik 12 (1966), pp. 379-384. · Zbl 0295.02014
[12] L. L. Maksimova, On a classification of modal logics, (in Russian), Algebra i logika 18, 3 (1979), pp. 328-340.
[13] L. L. Maksimova, Interpolation theorems in modal logics and amalgamated varieties of topoboolean algebras, (in Russian), Algebra i logika 18, 5 (1979), pp. 556-586. · Zbl 0436.03011
[14] L. L. Maksimova, Interpolation theorems in modal logics. Sufficient conditions, (in Russian), Algebra i logika 19, 2 (1980), pp. 194-213. · Zbl 0457.03021
[15] L. L. Maksimova, Failure of interpolation property in modal counterparts of Dummett’s logic, (in Russian), Algebra i logika 21, 6 (1982), pp. 690-694.
[16] L. L. Maksimova, Lyndon’s interpolation theorem in modal logics, in Matematicheskaya logika i teoria algoritmov (1982), pp. 84-87, Nauka (Siberian Division), Novosibirsk.
[17] L. L. Maksimova, Interpolation properties of superintuitionistic, positive and modal logics, in Intensional Logics: Theory and Applications (V. 35, 1982), pp. 70-78, Acta Philosophica Fennica, Helsinki. · Zbl 0521.03014
[18] L. L. Maksimova, On interpolation in modal logics containing S4, 7th International Congress of Logic, Methodology and Philosophy of Science, Salzburg, 1983, Abstracts 1, pp. 84-87.
[19] L. L. Maksimova, On the number of amalgamated varieties of topoboolean algebras, (in Russian), 17 Vsesoyuznaya algebraicheskaya konferencya, tezytsy, part 2, Minsk, 1983, pp. 135-136.
[20] L. L. Maksimova, On interpolation in normal modal logics, (in Russian), in Neklassicheskie logiki (1987), pp. 40-56, Stiinca, Kishinev. · Zbl 0643.03012
[21] L. L. Maksimova, Interpolation in modal logics of infinite slice containing K4, (in Russian), in Matematicheskaya logika i algorithmicheskie problemy (1989), Nauka (Siberian Division), Novosibirsk. · Zbl 0713.03006
[22] L. L. Maksimova, Interpolation in infinite-slice extensions of the provability logic, (in Russian), Algebra i logika 27, 5 (1988), pp. 581-604. · Zbl 0681.03006
[23] V. Y. Meschi, Algebraic analysis of modal fragments of tense logics, (in Russian), in Logika, semantika, metodologia (1978), pp. 113-124, Metsniereba, Tbilissi.
[24] D. Pigozzi, Amalgamation, congruence extension and interpolation properties in algebras, Algebra Universalis 1/3 (1972), pp. 269-349. · Zbl 0236.02047
[25] W. Rautenberg, Modal tableau calculi and interpolation, Journal of Philosophical Logic 12 (1983), pp. 403-423. · Zbl 0547.03015
[26] G. Schumm, Interpolation in S5 and related systems, Reports on Mathematical Logic 6 (1976), pp. 107-110. · Zbl 0361.02030
[27] K. Segerberg, An Essay in Classical Modal Logic (1971), Uppsala. · Zbl 0311.02028
[28] C. Smorynski, Beth’s theorem and self-referential sentences, in Logic Colloquium ’77 (pp. 253-261), North-Holland, Amsterdam. · Zbl 0453.03018
[29] S. K. Thomason, Categories of frames for modal logic, Journal of Symbolic Logic 40, 3 (1975), pp. 439-442. · Zbl 0317.02012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.