×

Constants of motion for the finite-dimensional Lohe type models with frustration and applications to emergent dynamics. (English) Zbl 07493965

Summary: We present constants of motion for the finite-dimensional Lohe type aggregation models with frustration, and apply them to the analysis of collective behaviors. The Lohe type models have been proposed as possible non-abelian and higher-dimensional generalizations of the Kuramoto model, which is a prototype phase model for synchronization. In this paper, we study the emergent collective dynamics of these models under the effect of (interaction) frustration, which generalizes phase-shift frustrations in the Kuramoto model. To this end, we provide constants of motion, i.e., conserved quantities along the flow generated by the models under consideration. From the perspective of the low-dimensional dynamics, we derive several results on the emergent asymptotic patterns of the Kuramoto and Lohe sphere models.

MSC:

82-XX Statistical mechanics, structure of matter
92-XX Biology and other natural sciences
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Acebron, J. A.; Bonilla, L. L.; Pérez Vicente, C. J.P.; Ritort, F.; Spigler, R., The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Modern Phys., 77, 137-185 (2005)
[2] Aeyels, D.; Rogge, J., Stability of phase locking and existence of entrainment in networks of globally coupled oscillators, Progr. Theoret. Phys., 112, 921-941 (2004) · Zbl 1071.34033
[3] Albi, G.; Bellomo, N.; Fermo, L.; Ha, S.-Y.; Kim, J.; Pareschi, L.; Poyato, D.; Soler, J., Vehicular traffic, crowds, and swarms: from kinetic theory and multiscale methods to applications and research perspectives, Math. Models Methods Appl. Sci., 29, 1901-2005 (2019) · Zbl 1431.35211
[4] Buck, J.; Buck, E., Biology of synchronous flashing of fireflies, Nature, 211, 562-564 (1966)
[5] Kimble, H. J., The quantum internet, Nature, 453, 1023-1030 (2008)
[6] Kuramoto, Y., Chemical Oscillations, Waves and Turbulence (1984), Springer-Verlag: Springer-Verlag Berlin · Zbl 0558.76051
[7] Kuramoto, Y., (International Symposium on Mathematical Problems in Mathematical Physics. International Symposium on Mathematical Problems in Mathematical Physics, Lecture Notes Theor. Phys., vol. 30 (1975)), 420
[8] Lohe, M. A., Non-abelian Kuramoto model and synchronization, J. Phys. A, 42, Article 395101 pp. (2009) · Zbl 1187.37048
[9] Lohe, M. A., Quantum synchronization over quantum networks, J. Phys. A, 43, Article 465301 pp. (2010) · Zbl 1204.81039
[10] R. Olfati-Saber, Swarms on sphere: a programmable swarm with synchronous behaviors like oscillator networks, in: IEEE 45th Conference on Decision and Control, CDC, 2006, pp. 5060-5066.
[11] Peskin, C. S., Mathematical Aspects of Heart Physiology (1975), Courant Institute of Mathematical Sciences: Courant Institute of Mathematical Sciences New York · Zbl 0301.92001
[12] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences (2001), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0993.37002
[13] Watanabe, S.; Strogatz, S. H., Constants of motion for superconducting Josephson arrays, Physica D, 74, 197-253 (1994) · Zbl 0812.34043
[14] Strogatz, S. H., From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143, 1-20 (2000) · Zbl 0983.34022
[15] Winfree, A. T., Biological rhythms and the behavior of populations of coupled oscillators, J. Theoret. Biol., 16, 15-42 (1967)
[16] Winfree, A. T., The Geometry of Biological Time (1980), Springer: Springer New York · Zbl 0464.92001
[17] Ha, S.-Y.; Ryoo, S. W., On the emergence and orbital stability of phase-locked states for the Lohe model, J. Stat. Phys., 163, 411-439 (2016) · Zbl 1359.82013
[18] Chi, D.; Choi, S.-H.; Ha, S.-Y., Emergent behaviors of a holonomic particle system on a sphere, J. Math. Phys., 55, Article 052703 pp. (2014) · Zbl 1325.70040
[19] Choi, S.-H.; Ha, S.-Y., Complete entrainment of Lohe oscillators under attractive and repulsive couplings, SIAM J. Appl. Dyn. Syst., 13, 1417-1441 (2013) · Zbl 1310.34060
[20] Choi, S.-H.; Ha, S.-Y., Quantum synchronization of the Schödinger-Lohe model, J. Phys. A, 47, Article 355104 pp. (2014) · Zbl 1303.35079
[21] Choi, S.-H.; Ha, S.-Y., Emergent behaviors of quantum Lohe oscillators with all-to-all couplings, J. Nonlinear Sci., 25, 1257-1283 (2015) · Zbl 1345.81026
[22] Choi, S.-H.; Ha, S.-Y., Large-time dynamics of the asymptotic Lohe model with a small-time delay, J. Phys. A, 48, Article 425101 pp. (2015) · Zbl 1332.34118
[23] Choi, S.-H.; Ha, S.-Y., Time-delayed interactions and synchronization of identical Lohe oscillators, Q. Appl. Math., 74, Article 205203 pp. (2016) · Zbl 1359.92012
[24] Ha, S.-Y.; Park, H., Complete aggregation of the Lohe tensor model with the same free flow, J. Math. Phys., 61, Article 102702 pp. (2020) · Zbl 1454.82026
[25] Ha, S.-Y.; Park, H., From the Lohe tensor model to the Lohe Hermitian sphere model and emergent dynamics, SIAM J. Appl. Dyn. Syst., 19, 1312-1342 (2020) · Zbl 1441.82011
[26] Ha, S.-Y.; Park, H., Emergent behaviors of Lohe tensor flock, J. Stat. Phys., 178, 1268-1292 (2020) · Zbl 1437.82013
[27] Ha, S.-Y.; Park, H., On the Schrödinger-Lohe hierarchy for aggregation and its emergent dynamics, J. Stat. Phys. (2020) · Zbl 1462.82021
[28] Daido, H., Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions, Phys. Rev. Lett., 68, 1073-1076 (1992)
[29] Sakaguchi, H.; Kuramoto, Y., A soluble active rotator model showing phase transitions via mutual entrainment, Prog. Theor. Phys., 76, 576-581 (1986)
[30] Zheng, Z. G., Frustration effect on synchronization and chaos in coupled oscillators, Chin. Phys. Soc., 10, 703-707 (2001)
[31] Ha, S.-Y.; Kim, Y.; Li, Z., Asymptotic synchronization behavior of Kuramoto type models with frustrations, Netw. Heterog. Media, 9, 33-64 (2014) · Zbl 1333.92044
[32] Ha, S.-Y.; Kim, Y.; Li, Z., Large-time dynamics of Kuramoto oscillators under the effects of inertia and frustration, SIAM J. Appl. Dyn. Syst., 13, 466-492 (2014) · Zbl 1302.34059
[33] Li, Z.; Ha, S.-Y., Uniqueness and well-ordering of emergent phase-locked states for the Kuramoto model with frustration and inertia, Math. Models Methods Appl. Sci., 26, 357-382 (2016) · Zbl 1355.92146
[34] Lohe, M. A., Higher-dimensional generalizations of the Watanabe-Strogatz transform for vector models for synchronization, J. Phys. A, 51, Article 225101 pp. (2018) · Zbl 1398.34072
[35] Chen, B.; Engelbrecht, J. R.; Mirollo, R. L., Hyperbolic geometry of Kuramoto oscillator networks, J. Phys. A, 50, Article 355101 pp. (2017) · Zbl 1377.35248
[36] Lohe, M. A., Systems of matrix Riccati equations, linear fractional transformations, partial integrability and synchronization, J. Math. Phys., 60, Article 072701 pp. (2019) · Zbl 1422.34161
[37] Benedetto, D.; Caglioti, E.; Montemagno, U., On the complete phase synchronization for the Kuramoto model in the mean-field limit, Commun. Math. Sci., 13, 1775-1786 (2015) · Zbl 1345.37065
[38] Choi, Y.; Ha, S.-Y.; Jung, S.; Kim, Y., Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241, 735-754 (2012) · Zbl 1238.34102
[39] Chopra, N.; Spong, M. W., On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automat. Control, 54, 353-357 (2009) · Zbl 1367.34076
[40] Dong, J.-G.; Xue, X., Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11, 465-480 (2013) · Zbl 1301.34072
[41] Dörfler, F.; Bullo, F., On the critical coupling for Kuramoto oscillators, SIAM J. Appl. Dyn. Syst., 10, 1070-1099 (2011) · Zbl 1242.34096
[42] F. Dörfler, F. Bullo, Exploring synchronization in complex oscillator networks, in: IEEE 51st Annual Conference on Decision and Control, CDC, 2012, pp. 7157-7170.
[43] Dörfler, F.; Bullo, F., Synchronization in complex networks of phase oscillators: A survey, Automatica, 50, 1539-1564 (2014) · Zbl 1296.93005
[44] Ha, S.-Y.; Kim, H. W.; Ryoo, S. W., Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci., 14, 1073-1091 (2016) · Zbl 1383.92016
[45] Ha, S.-Y.; Li, Z.; Xue, X., Formation of phase-locked states in a population of locally interacting Kuramoto oscillators, J. Differential Equations, 255, 3053-3070 (2013) · Zbl 1325.34066
[46] A. Jadbabaie, N. Motee, M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, in: Proceedings of the American Control Conference, 2004, pp. 4296-4301.
[47] Mirollo, R.; Strogatz, S. H., Stability of incoherence in a population of coupled oscillators, J. Stat. Phys., 63, 613-635 (1991)
[48] Mirollo, R.; Strogatz, S. H., The spectrum of the locked state for the Kuramoto model of coupled oscillators, Physica D, 205, 249-266 (2005) · Zbl 1085.34033
[49] Mirollo, R.; Strogatz, S. H., The spectrum of the partially locked state for the Kuramoto model, J. Nonlinear Sci., 17, 309-347 (2007) · Zbl 1119.37051
[50] Verwoerd, M.; Mason, O., On computing the critical coupling coefficient for the Kuramoto model on a complete bipartite graph, SIAM J. Appl. Dyn. Syst., 8, 417-453 (2009) · Zbl 1167.34331
[51] Verwoerd, M.; Mason, O., Global phase-locking in finite populations of phase-coupled oscillators, SIAM J. Appl. Dyn. Syst., 7, 134-160 (2008) · Zbl 1167.34330
[52] Ha, S.-Y.; Ko, D.; Ryoo, S. W., Emergent dynamics of a generalized Lohe model on some class of Lie groups, J. Stat. Phys., 168, 171-207 (2017) · Zbl 1376.82044
[53] DeVille, L., Synchronization and stability for quantum Kuramoto, J. Stat. Phys., 174, 160-187 (2019) · Zbl 1412.82021
[54] Marvel, S. A.; Mirollo, R.; Strogatz, S. H., Identical phase oscillators with global sinusoidal coupling evolve by Möbius group action, Chaos, 19, Article 043104 pp. (2009) · Zbl 1311.34082
[55] S.-Y. Ha, D. Kim, H. Park, S.W. Ryoo, Constants of motion for the finite-dimensional Lohe type models with frustration and applications to emergent dynamics, archived as arXiv:. · Zbl 07493965
[56] Crnkić, A.; Jaćimović, V., Consensus and balancing on the three-sphere, J. Global Optim., 76, 575-586 (2020) · Zbl 1441.37050
[57] Jaćimović, V.; Crnkić, A., Low-dimensional dynamics in non-Abelian Kuramoto model on the \(3\)-sphere, Chaos, 28, Article 083105 pp. (2018) · Zbl 1405.37028
[58] M. Lipton, Conformal group actions on generalized Kuramoto oscillators, archived as arXiv:1812.06539.
[59] M. Lipton, R. Mirollo, S.H. Strogatz, On higher dimensional generalized Kuramoto oscillator systems, archived as arXiv:1907.07150.
[60] Tanaka, T., Solvable model of the collective motion of heterogeneous particles interacting on a sphere, New J. Phys., 16, Article 023016 pp. (2014) · Zbl 1451.70004
[61] Berger, M., (Geometry I. Geometry I, Universitext (2009), Springer-Verlag: Springer-Verlag Berlin), Translated from the 1977 French original by M. Cole and S. Levy. Fourth printing of the 1987 English translation
[62] Chandra, S.; Girvan, M.; Ott, E., Continuous versus discontinuous transitions in the D-dimensional generalized Kuramoto model: Odd D is different, Phys. Rev. X, 9, Article 011002 pp. (2019)
[63] Chandra, S.; Girvan, M.; Ott, E., Complexity reduction ansatz for systems of interacting orientable agents: Beyond the Kuramoto model, Chaos, 29, Article 053107 pp. (2019) · Zbl 1415.34085
[64] Jaćimović, V.; Crnkić, A., On reversibility of macroscopic and microscopic dynamics in the Kuramoto model, Physica D (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.