Lévy Laplacian of generalized functions on a nuclear space. (English) Zbl 0749.46029

Summary: The Lévy Laplacian \[ \Delta F(\xi)=\lim_{X\to\infty} N^{- 1}\sum_{n=1}^ N\langle F''(\xi),e_ n\otimes e_ n\rangle \] is shown to be equal to
(i) \(\int_ T F_ s''(\xi;t)dt\), where \(F_ s''\) is the singular part of \(F''\), and
(ii) \(2\lim_{\rho\to 0}\rho^{-2}(MF(\xi,\rho)-F(\xi))\), where \(MF\) is the spherical mean of \(F\).
It is proved that regular polynomials are \(\Delta\)-harmonic and possess the mean value property. A relation between the Lévy Laplacian \(\Delta\) and the Gross Laplacian \[ \Delta_ G F(\xi)=\sum_{n=1}^ \infty\langle F''(\xi),e_ n\otimes e_ n\rangle \] is obtained. An application to white noise calculus is discussed.


46F25 Distributions on infinite-dimensional spaces
46A11 Spaces determined by compactness or summability properties (nuclear spaces, Schwartz spaces, Montel spaces, etc.)
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
Full Text: DOI


[1] Gross, L., Potential theory on Hilbert space, J. Funct. Anal., 1, 123-181 (1967) · Zbl 0165.16403
[2] Hida, T., Analysis of Brownian Functionals, Carleton Mathematics Lecture Notes, Vol. 13 (1978), 2nd ed. · Zbl 0392.60055
[3] Hida, T., Generalized multiple Wiener integrals, (Proc. Japan Acad. Ser. A, 54 (1978)), 55-58 · Zbl 0389.60026
[4] Hida, T., Brownian Motion (1980), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0432.60002
[5] Hida, T.; Saitô, K., White noise analysis and the Lévy Laplacian, (Albeverio, S.; etal., Stochastic Processes in Physics and Engineering (1988), Reidel: Reidel Dordrecht), 177-184
[6] Kubo, I.; Takenaka, S., Calculus on Gaussian white noise, I, (Proc. Japan Acad. Ser. A, 56 (1980)), 376-380 · Zbl 0459.60068
[7] Kubo, I.; Takenaka, S., Calculus on Gaussian white noise, II, (Proc. Japan Acad. Ser. A, 56 (1980)), 411-416 · Zbl 0475.60064
[8] Kuo, H.-H, Gaussian Measures in Banach Spaces, (Lecture Notes in Mathematics, Vol. 463 (1975), Springer-Verlag: Springer-Verlag Berlin/New York)
[9] Kuo, H.-H, Brownian functionals and applications, Acta Appl. Math., 1, 175-188 (1983) · Zbl 0527.60036
[10] Kuo, H.-H, Infinite Dimensional Stochastic Analysis, Nagoya University Lecture Notes (1984)
[11] Kuo, H.-H, On Laplacian operators of generalized Brownian functionals, (Itô, K.; Hida, T., Stochastic Processes and Their Applications. Stochastic Processes and Their Applications, Lecture Notes in Mathematics, Vol. 1203 (1986), Springer-Verlag: Springer-Verlag Berlin/New York), 119-128
[12] Kuo, H.-H, The Fourier transform in white noise calculus (1989), preprint · Zbl 0686.60005
[13] Lévy, P., Leçons d’analyse fonctionnelle (1922), Gauthier-Villars: Gauthier-Villars Paris · JFM 48.0453.01
[14] Lévy, P., Problèmes concrets d’analyse fonctionnelle (1951), Gauthier-Villars: Gauthier-Villars Paris · Zbl 0043.32302
[15] Obata, N., A note on certain permutation groups in the infinite dimensional rotation groups, Nagoya Math. J., 109, 91-107 (1988) · Zbl 0611.60013
[16] Obata, N., Analysis of the Lévy Laplacian, Soochow J. Math., 14, 105-109 (1988) · Zbl 0659.60104
[17] Obata, N., The Lévy Laplacian and mean value theorem, (Heyer, H., Probability Measures on Groups, IX. Probability Measures on Groups, IX, Lecture Notes in Mathematics, Vol. 1379 (1989), Springer-Verlag: Springer-Verlag Berlin/New York), 242-253
[18] Obata, N., A characterization of the Lévy Laplacian in terms of infinite dimensional rotation groups, Nagoya Math. J., 118, 111-132 (1990) · Zbl 0682.22015
[19] Polishchuk, E. M., Continual Means and Boundary Value Problems in Function Spaces (1988), Birkhäuser: Birkhäuser Basel/Boston/Berlin · Zbl 0685.31001
[20] Saitô, K., Itô’s formula and Lévy’s Laplacian, Nagoya Math. J., 108, 67-76 (1987) · Zbl 0646.60070
[21] Treves, F., Topological Vector Spaces, Distributions and Kernels (1967), Academic Press: Academic Press New York/London · Zbl 0171.10402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.