×

zbMATH — the first resource for mathematics

Local stability conditions in fluid dynamics. (English) Zbl 0746.76050
Summary: Three-dimensional flows of an inviscid incompressible fluid and an inviscid subsonic compressible gas are considered and it is demonstrated how the WKB method can be used for investigating their stability. The evolution of rapidly oscillating initial data is considered and it is shown that in both cases the corresponding flows are unstable if the transport equations associated with the wave which is advected by the flow have unbounded solutions. Analyzing the corresponding transport equations, a number of classical stability conditions are rederived and some new ones are obtained. In particular, it is demonstrated that steady flows of an incompressible fluid and an inviscid subsonic compressible gas are unstable if they have points of stagnation.

MSC:
76E99 Hydrodynamic stability
76B99 Incompressible inviscid fluids
76G25 General aerodynamics and subsonic flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0375-9601(91)91092-R · doi:10.1016/0375-9601(91)91092-R
[2] DOI: 10.1016/0375-9601(91)91023-7 · doi:10.1016/0375-9601(91)91023-7
[3] DOI: 10.1017/S0022112080002066 · Zbl 0418.76036 · doi:10.1017/S0022112080002066
[4] DOI: 10.1017/S0022112083000518 · Zbl 0556.76039 · doi:10.1017/S0022112083000518
[5] DOI: 10.1146/annurev.fl.20.010188.002043 · doi:10.1146/annurev.fl.20.010188.002043
[6] DOI: 10.1080/14786448708628078 · doi:10.1080/14786448708628078
[7] McF. Orr W., Proc. R. Ir. Acad. Sect. A 27 pp 9– (1907)
[8] DOI: 10.1098/rspa.1986.0061 · Zbl 0602.76032 · doi:10.1098/rspa.1986.0061
[9] DOI: 10.1103/PhysRevLett.57.2160 · doi:10.1103/PhysRevLett.57.2160
[10] DOI: 10.1063/1.867002 · Zbl 0651.76018 · doi:10.1063/1.867002
[11] DOI: 10.1103/PhysRevLett.57.2157 · doi:10.1103/PhysRevLett.57.2157
[12] DOI: 10.1103/PhysRevLett.66.2204 · Zbl 0968.76543 · doi:10.1103/PhysRevLett.66.2204
[13] DOI: 10.1016/0022-0396(81)90012-7 · Zbl 0427.35012 · doi:10.1016/0022-0396(81)90012-7
[14] DOI: 10.1017/S0022112078002669 · Zbl 0398.76039 · doi:10.1017/S0022112078002669
[15] DOI: 10.1017/S0022112080000699 · Zbl 0504.76080 · doi:10.1017/S0022112080000699
[16] DOI: 10.1063/1.1711386 · doi:10.1063/1.1711386
[17] DOI: 10.1093/qjmam/27.1.69 · Zbl 0278.76017 · doi:10.1093/qjmam/27.1.69
[18] DOI: 10.1017/S0022112075001425 · Zbl 0309.76031 · doi:10.1017/S0022112075001425
[19] DOI: 10.1098/rspa.1990.0094 · Zbl 0703.76027 · doi:10.1098/rspa.1990.0094
[20] DOI: 10.1103/PhysRevLett.39.939 · doi:10.1103/PhysRevLett.39.939
[21] DOI: 10.1098/rspa.1979.0001 · doi:10.1098/rspa.1979.0001
[22] DOI: 10.1063/1.864028 · Zbl 0538.76123 · doi:10.1063/1.864028
[23] DOI: 10.1002/cpa.3160380104 · Zbl 0542.76067 · doi:10.1002/cpa.3160380104
[24] DOI: 10.1016/0375-9601(87)90841-3 · doi:10.1016/0375-9601(87)90841-3
[25] DOI: 10.1063/1.866124 · doi:10.1063/1.866124
[26] DOI: 10.2514/3.8761 · doi:10.2514/3.8761
[27] DOI: 10.1146/annurev.fl.07.010175.001041 · doi:10.1146/annurev.fl.07.010175.001041
[28] DOI: 10.1017/S0022112083000191 · Zbl 0519.76022 · doi:10.1017/S0022112083000191
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.