Beyer, Richard P. jun. A computational model of the cochlea using the immersed boundary method. (English) Zbl 0744.76128 J. Comput. Phys. 98, No. 1, 145-162 (1992). In this work we describe a two-dimensional computational model of the cochlea (inner ear). The cochlea model is solved by modifying and extending Peskin’s immersed boundary method, originally applied to solving a model of the heart. This method solves the time-dependent incompressible Navier-Stokes equations in the presence of immersed boundaries. The fluid equations are specified on a fixed Eulerian grid while the immersed boundaries are specified on a moving Lagrangian grid. The immersed boundaries exert forces locally on the fluid. These local forces are seen by the fluid as external forces that are added to the other forces, pressure and viscous, acting on the fluid. Cited in 44 Documents MSC: 76Z99 Biological fluid mechanics 76D05 Navier-Stokes equations for incompressible viscous fluids 76M20 Finite difference methods applied to problems in fluid mechanics 92C10 Biomechanics Keywords:cochlea; immersed boundary method; Navier-Stokes equations; immersed boundaries; fixed Eulerian grid; moving Lagrangian grid PDF BibTeX XML Cite \textit{R. P. Beyer jun.}, J. Comput. Phys. 98, No. 1, 145--162 (1992; Zbl 0744.76128) Full Text: DOI References: [1] Allen, J.B., (), 1 [2] Allen, J.B.; Sondhi, M.M., J. acoust. soc. am., 66, No. 1, 123, (1979) [3] Bell, J.B.; Colella, P.; Glaz, H.M., J. comput. phys., 85, 257, (1989) [4] Beyer, R.P., () [5] Birdsall, C.K., Plasma physics via computer simulation, (1985), McGrawHill New York [6] Chorin, A.J., Math. comput., 22, 745, (1968) [7] Fauci, L.J., () [8] Fogelson, A.L., J. comput. phys., 56, 111, (1984) [9] LeVeque, R.J.; Peskin, C.S.; Lax, P.D., SIAM J. appl. math., 48, 191, (1988) [10] Loh, C.H., J. acoust. soc. am., 74, 95, (1983) [11] Peskin, C.S., J. comput. phys., 25, 220, (1977) [12] Rhode, W.S., J. acoust. soc. am., 49, No. 4, 1218, (1971), (Part 2) [13] Rhode, W.S., J. acoust. soc. am., 67, No. 5, 1696, (1980) [14] Steele, C.R.; Taber, L.A., J. acoust. soc. am., 65, 1007, (1979) [15] Steele, C.R.; Zias, J.G., J. acoust. soc. am., 77, 1849, (1985) [16] Viergever, M.A., (), 63 [17] Viergever, M.A., J. acoust. soc. am., 64, 1048, (1978) [18] Viergever, M.A., Mechanics of the inner ear-A mathematical approach, (1980), Delft Univ. Press Delft · Zbl 0447.76064 [19] Von Békésy, G., Experiments in hearing, (1960), McGraw-Hill New York [20] Zias, J.G., (), 73 [21] Zwislocki, J., J. acoust. soc. am., 67, 1679, (1980) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.