×

zbMATH — the first resource for mathematics

Bicovariant differential calculus on quantum groups \(SU_ q(N)\) and \(SO_ q(N)\). (English) Zbl 0743.17015
Following Woronowicz’s proposal, the bicovariant differential calculus on the quantum groups \(SU_ q(N)\) and \(SO_ q(N)\) is constructed. First of all, the authors construct the fundamental bicovariant bimodules of the quantum groups \(SU_ q(N)\) and \(SO_ q(N)\) by using the \(R_ q\) matrix. Other bicovariant bimodules can be constructed using them as building blocks. They also show that the Hopf algebras generated by the linear functionals which relate left and right multiplication of these bicovariant bimodules coincide with the \(q\)-deformed universal enveloping algebras defined by Drinfel’d and Jimbo earlier. Imposing the conditions of bicovariance and consistency with the quantum group structure, they define the differential algebras and exterior derivatives. As an application, they derive the Maurer-Cartan equations and the \(q\)-analogue of the structure constants.

MSC:
17B37 Quantum groups (quantized enveloping algebras) and related deformations
46L85 Noncommutative topology
46L87 Noncommutative differential geometry
58A15 Exterior differential systems (Cartan theory)
16W30 Hopf algebras (associative rings and algebras) (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] [Abe] Abe, E.: Hopf Algebras. Cambridge Tracts in Math., Vol. 74. Cambridge: Cambridge Univ. Press 1980 · Zbl 0476.16008
[2] [Connes] Connes, A.: Publ. Math. IHES Vol.62, 41 (1986)
[3] [CSSW] Carow-Watamura, U., Schlieker, M., Scholl, M., Watamura, S.: Z. Phys. C-Particles and Fields48, 159–165 (1990); Quantum Lorentz Group. Int. J. Mod. Phys. A6, 3081–3108 (1991) · Zbl 0736.17018 · doi:10.1007/BF01565619
[4] [CSW] Carow-Watamura, U., Schlieker, M., Watamura, S.:SO q (N) Covariant differential calculus on quantum space and quantum deformation of Schrödinger equation. Z. Phys. C-Particles and Fields49, 439–446 (1991) · Zbl 0743.17015 · doi:10.1007/BF01549697
[5] [Dri] Drinfeld, V.G.: Quantum groups. Proceedings of the International Congress of mathematicians, 1986, Vol. 1, pp. 798–820
[6] [FRT] Faddeev, L.D., Reshetikhin, N.Yu., Takhtajan, L.A.: Algebra Anal.1, 178–206 (1987)
[7] [Jim] Jimbo, M.: Lett. Math. Phys.10, 63–69 (1986) · Zbl 0587.17004 · doi:10.1007/BF00704588
[8] [PW] Podlés, P., Woronowicz, S.L.: Commun. Math. Phys.130, 381–431 (1990) · Zbl 0703.22018 · doi:10.1007/BF02473358
[9] [Res] Reshetikhin, N.Yu.: Quantized universal enveloping algebras. The Yang-Baxter equation and invariants of links. I, II. LOMI preprints E-4-87 and E-17-87 (1987)
[10] [Rosso] Rosso, M.: Algebras enveloppantes, quantifiees, groupes quantiques compacts de matrices et calcul differentiel non commutatif. Duke Math. J.61, 11–40 (1990) · Zbl 0721.17013 · doi:10.1215/S0012-7094-90-06102-2
[11] [Stach] Stachura, P.: Bicovariant differential calculi onS m uU(2). Lett. Math. Physics (to appear)
[12] [SVZ] Schmidke, W.M., Vokos, S.P., Zumino, B.: Z. Phys. C48, 249–255 (1990) · Zbl 0973.17504 · doi:10.1007/BF01554473
[13] [SWZ] Schirrmacher, A., Wess, J., Zumino, B.: The two-parameter deformation ofGL(2), its differential calculus and Lie algebra. Preprint KA-THEP-19-1990
[14] [Takh] Takhtajan, L.: Quantum groups and integrable systems. Adv. Stud. Pure Math. 19
[15] [Weich] Weich, W.: Ph. D. Thesis, Die QuantengruppeSU q (2)-kovariante Differentialrechnung und ein quantensymmetrisches quantenmechanisches Modell. Karlsruhe University, November 1990 · Zbl 0744.46074
[16] [Wor1] Woronowicz, S.L.: Publ. Res. Inst. Math. Sci., Kyoto University,23, 117–181 (1987) · Zbl 0676.46050 · doi:10.2977/prims/1195176848
[17] [Wor2] Woronowicz, S.L.: Commun. Math. Phys.111, 613–665 (1987) · Zbl 0627.58034 · doi:10.1007/BF01219077
[18] [Wor3] Woronowicz, S.L.: Commun. Math. Phys.122, 122–170 (1989) · Zbl 0751.58042 · doi:10.1007/BF01221411
[19] [Wor4] Woronowicz, S.L.: Invent. Math.93, 35–76 (1988) · Zbl 0664.58044 · doi:10.1007/BF01393687
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.