×

zbMATH — the first resource for mathematics

High-order ENO schemes applied to two- and three-dimensional compressible flow. (English) Zbl 0741.76052
Summary: High-order essentially nonoscillatory (ENO) finite-difference schemes are applied to the two- and thee-dimensional compressible Euler and Navier- Stokes equations. Practical issues, such as vectorization, efficiency of coding, cost comparison with other numerical methods and accuracy degeneracy effects, are discussed. Numerical examples are provided which are representative of computational problems of current interest in transition and turbulence physics. These require both nonoscillatory shock capturing and high resolution for detailed structures in the smooth regions and demonstrate the advantage of ENO schemes.

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Atkins, H.L., Analysis of a second-order-accurate finite-volume method for temporally-growing compressible shear layers, AIAA paper no. 89-1809, (1989)
[2] Carpenter, M.H., A high-order compact numerical algorithm for supersonic flows, (), 254
[3] Cain, A.B.; Ferziger, J.H.; Reynolds, W.C., Discrete orthogonal function expansions for non-uniform grids using the fast Fourier transform, J. comput. phys., 56, 272-286, (1984) · Zbl 0557.65097
[4] Erlebacher, G.; Hussaini, M.Y., Numerical experiments in supersonic boundary-layer stability, Phys. fluids A, 2, 94-104, (1990)
[5] Erlebacher, G.; Sarkar, S.; Hussaini, M.Y.; Kreiss, H.O., The analysis and simulation of compressible turbulence, ICASE report no. 90-15, (1990) · Zbl 0722.76068
[6] Harten, A.; Osher, S., Uniformly high-order accurate nonoscillatory schemes I, SIAM J. numer. anal., 24, 279-309, (1987) · Zbl 0627.65102
[7] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., Uniformly high order accurate essentially non-oscillatory schemes III, J. comput. phys., 71, 231-303, (1987) · Zbl 0652.65067
[8] Preliminary results on the extension of ENO schemes to two-dimensional problems, Proceedings international conference on hyperbolic problems, (1986), Saint-Etienne
[9] Hussaini, M.Y.; Zang, T.A., Spectral methods in fluid dynamics, Ann. rev. fluid mech., 19, 339-367, (1987) · Zbl 0636.76009
[10] Lele, S.K., Direct numerical simulation of compressible free shear flows, AIAA paper no. 89-0374, (1989)
[11] Macaraeg, M.G.; Streett, C.L.; Hussaini, M.Y., A spectral collocation solution to the compressible stability eigenvalue problem, Nasa tp 2858, (1988) · Zbl 0667.76079
[12] Munz, C.D.; Schmidt, L.; Schöffel, S., Numerical simulation of the formation of vortex streets in a compressible fluid, ()
[13] Osher, S.; Chakravarthy, S., High resolution schemes and the entropy condition, SIAM J. numer. anal., 21, 955-984, (1984) · Zbl 0556.65074
[14] Osher, S.; Shu, C.-W., Essentially non-oscillatory shock-capturing methods applied to turbulence amplification in shock wave calculations, ()
[15] Passot, T.; Pouquet, A., Numerical simulation of compressible homogeneous flows in the turbulent regime, J. fluid mech., 181, 441-466, (1987) · Zbl 0633.76054
[16] Ragab, S.A.; Sheen, S., Numerical simulation of a compressible mixing layer, AIAA paper no. 90-1669, (1990)
[17] Roe, P., Approximate Riemann solvers, parameter vectors, and difference schemes, J. comput. phys., 27, 1-31, (1978)
[18] A. Rogerson and E. Meiburg, A numerical study of the convergence properties of ENO schemes, J. Sci. Comput. (to appear). · Zbl 0732.65086
[19] Sandham, N.D.; Reynolds, W.C., Growth of oblique waves in the mixing layer at high Mach number, Proceedings 7th symposium turbulent shear flows, (1989)
[20] Sandham, N.D.; Yee, H.C., A numerical study of a class of TVD schemes for compressible mixing layers, Nasa tm 102194, (1989)
[21] C.-W. Shu, Numerical experiments on the accuracy of ENO and modified ENO schemes, J. Sci. Comput. (to appear). · Zbl 0732.65085
[22] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. comput. phys., 77, 439-471, (1988) · Zbl 0653.65072
[23] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes II, J. comput. phys., 83, 32-78, (1989) · Zbl 0674.65061
[24] Soetrisno, M.; Eberhardt, S.; Riley, J.J.; McMurtry, P., A study of inviscid, supersonic mixing layers using a second-order TVD scheme, AIAA paper no. 88-3676, (1988)
[25] Tang, W.; Komerath, N.; Shankar, L., Numerical simulation of the growth of instabilities in supersonic free shear layers, AIAA paper no. 89-0376, (1989)
[26] Zang, T.A.; Krist, S.E.; Hussaini, M.Y., Resolution requirements for numerical simulations of transitions, J. sci. comput., 4, 197-217, (1989)
[27] Zang, T.A.; Kopriva, D.; Hussaini, M., Pseudospectral calculation of shock turbulence interactions, (), 210-221 · Zbl 0549.76045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.