×

Massive kite diagrams with elliptics. (English) Zbl 1508.81839

Summary: We present the results for two-loop massive kite master integrals with elliptics in terms of iterated integrals with algebraic kernels. The key ingredients are new integral representations for sunset subgraphs in \(d = 4 - 2\varepsilon\) and \(d = 2 - 2\varepsilon\) dimensions together with differential equations for considered kite master integrals in \(A + B\varepsilon\) form. The obtained results can be easily generalized to all orders in \(\varepsilon\)-expansion and show that the class of functions defined as iterated integrals with algebraic kernels may be large enough for writing down results for a large class of massive Feynman diagrams.

MSC:

81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
05C90 Applications of graph theory

Software:

Libra; LiteRed
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Kotikov, A. V., Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett. B, 254, 158-164 (1991)
[2] Kotikov, A. V., New method of massive Feynman diagrams calculation, Mod. Phys. Lett. A, 6, 677-692 (1991) · Zbl 1020.81734
[3] Kotikov, A. V., Differential equations method: the calculation of vertex type Feynman diagrams, Phys. Lett. B, 259, 314-322 (1991)
[4] Kotikov, A. V., Differential equation method: the calculation of N point Feynman diagrams, Phys. Lett. B. Phys. Lett. B, Phys. Lett. B, 295, 409-127 (1992), (Erratum)
[5] Remiddi, E., Differential equations for Feynman graph amplitudes, Nuovo Cimento A, 110, 1435-1452 (1997)
[6] Goncharov, A. B., Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett., 5, 497-516 (1998) · Zbl 0961.11040
[7] Remiddi, E.; Vermaseren, J. A.M., Harmonic polylogarithms, Int. J. Mod. Phys. A, 15, 725-754 (2000) · Zbl 0951.33003
[8] Goncharov, A. B., Multiple polylogarithms and mixed Tate motives (2001)
[9] Henn, J. M., Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett., 110, Article 251601 pp. (2013)
[10] Lee, R. N., Reducing differential equations for multiloop master integrals, J. High Energy Phys., 04, Article 108 pp. (2015) · Zbl 1388.81109
[11] Lee, R. N.; Pomeransky, A. A., Normalized Fuchsian form on Riemann sphere and differential equations for multiloop integrals (2017)
[12] Beilinson, A.; Levin, A., Elliptic polylogarithms, Proc. Symp. Pure Math., 55, 126-196 (1994)
[13] Wildeshaus, J., Lect. Notes Math., 1650 (1997) · Zbl 0877.11001
[14] Levin, A., Elliptic polylogarithms: an analytic theory, Compos. Math., 106, 3, 267-282 (1997) · Zbl 0905.11028
[15] Levin, A.; Racinet, G., Towards multiple elliptic polylogarithms (2007)
[16] Enriquez, B., Elliptic associators (2012) · Zbl 1294.17012
[17] Brown, F. C.S.; Levin, A., Multiple elliptic polylogarithms (2013)
[18] Bloch, S.; Vanhove, P., The elliptic dilogarithm for the sunset graph, J. Number Theory, 148, 328-364 (2015) · Zbl 1319.81044
[19] Adams, L.; Bogner, C.; Weinzierl, S., The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms, J. Math. Phys., 55, 10, Article 102301 pp. (2014) · Zbl 1298.81204
[20] Bloch, S.; Kerr, M.; Vanhove, P., A Feynman integral via higher normal functions, Compos. Math., 151, 12, 2329-2375 (2015) · Zbl 1365.81090
[21] Adams, L.; Bogner, C.; Weinzierl, S., The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case, J. Math. Phys., 56, 7, Article 072303 pp. (2015) · Zbl 1320.81059
[22] Adams, L.; Bogner, C.; Weinzierl, S., The iterated structure of the all-order result for the two-loop sunrise integral, J. Math. Phys., 57, 3, Article 032304 pp. (2016) · Zbl 1333.81283
[23] Adams, L.; Bogner, C.; Schweitzer, A.; Weinzierl, S., The kite integral to all orders in terms of elliptic polylogarithms, J. Math. Phys., 57, 12, Article 122302 pp. (2016) · Zbl 1353.81097
[24] Remiddi, E.; Tancredi, L., An elliptic generalization of multiple polylogarithms, Nucl. Phys. B, 925, 212-251 (2017) · Zbl 1375.81109
[25] Broedel, J.; Duhr, C.; Dulat, F.; Tancredi, L., Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism, J. High Energy Phys., 05, Article 093 pp. (2018)
[26] Broedel, J.; Duhr, C.; Dulat, F.; Tancredi, L., Elliptic polylogarithms and iterated integrals on elliptic curves II: an application to the sunrise integral, Phys. Rev. D, 97, 11, Article 116009 pp. (2018)
[27] Broedel, J.; Duhr, C.; Dulat, F.; Penante, B.; Tancredi, L., Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series, J. High Energy Phys., 08, Article 014 pp. (2018)
[28] Broedel, J.; Duhr, C.; Dulat, F.; Penante, B.; Tancredi, L., Elliptic Feynman integrals and pure functions, J. High Energy Phys., 01, Article 023 pp. (2019) · Zbl 1409.81162
[29] Broedel, J.; Duhr, C.; Dulat, F.; Penante, B.; Tancredi, L., Elliptic polylogarithms and Feynman parameter integrals, J. High Energy Phys., 05, Article 120 pp. (2019)
[30] Broedel, J.; Kaderli, A., Functional relations for elliptic polylogarithms, J. Phys. A, 53, 24, Article 245201 pp. (2020) · Zbl 1519.39019
[31] Bogner, C.; Müller-Stach, S.; Weinzierl, S., The unequal mass sunrise integral expressed through iterated integrals on \(\overline{\mathcal{M}}_{1 , 3} \), Nucl. Phys. B, 954, Article 114991 pp. (2020) · Zbl 1503.81031
[32] Broedel, J.; Duhr, C.; Dulat, F.; Marzucca, R.; Penante, B.; Tancredi, L., An analytic solution for the equal-mass banana graph, J. High Energy Phys., 09, Article 112 pp. (2019)
[33] Walden, M.; Weinzierl, S., Numerical evaluation of iterated integrals related to elliptic Feynman integrals (2020)
[34] Weinzierl, S., Modular transformations of elliptic Feynman integrals (2020)
[35] Adams, L.; Chaubey, E.; Weinzierl, S., Planar double box integral for top pair production with a closed top loop to all orders in the dimensional regularization parameter, Phys. Rev. Lett., 121, 14, Article 142001 pp. (2018)
[36] Adams, L.; Chaubey, E.; Weinzierl, S., Analytic results for the planar double box integral relevant to top-pair production with a closed top loop, J. High Energy Phys., 10, Article 206 pp. (2018)
[37] Primo, A.; Tancredi, L., Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph, Nucl. Phys. B, 921, 316-356 (2017) · Zbl 1370.81073
[38] Bourjaily, J. L.; McLeod, A. J.; Spradlin, M.; von Hippel, M.; Wilhelm, M., Elliptic double-box integrals: massless scattering amplitudes beyond polylogarithms, Phys. Rev. Lett., 120, 12, Article 121603 pp. (2018)
[39] Bourjaily, J. L.; He, Y.-H.; Mcleod, A. J.; Von Hippel, M.; Wilhelm, M., Traintracks through Calabi-Yau manifolds: scattering amplitudes beyond elliptic polylogarithms, Phys. Rev. Lett., 121, 7, Article 071603 pp. (2018)
[40] Bourjaily, J. L.; McLeod, A. J.; von Hippel, M.; Wilhelm, M., Bounded collection of Feynman integral Calabi-Yau geometries, Phys. Rev. Lett., 122, 3, Article 031601 pp. (2019)
[41] Adams, L.; Weinzierl, S., Feynman integrals and iterated integrals of modular forms, Commun. Number Theory Phys., 12, 193-251 (2018) · Zbl 1393.81015
[42] Ablinger, J.; Blümlein, J.; De Freitas, A.; van Hoeij, M.; Imamoglu, E.; Raab, C. G.; Radu, C. S.; Schneider, C., Iterated elliptic and hypergeometric integrals for Feynman diagrams, J. Math. Phys., 59, 6, Article 062305 pp. (2018) · Zbl 1394.81164
[43] Kniehl, B. A.; Kotikov, A. V.; Onishchenko, A.; Veretin, O., Two-loop sunset diagrams with three massive lines, Nucl. Phys. B, 738, 306-316 (2006) · Zbl 1109.81331
[44] Kniehl, B. A.; Kotikov, A. V.; Onishchenko, A. I.; Veretin, O. L., Two-loop diagrams in non-relativistic QCD with elliptics, Nucl. Phys. B, 948, Article 114780 pp. (2019) · Zbl 1435.81240
[45] Hidding, M.; Moriello, F., All orders structure and efficient computation of linearly reducible elliptic Feynman integrals, J. High Energy Phys., 01, Article 169 pp. (2019) · Zbl 1409.81048
[46] Tkachov, F. V., A theorem on analytical calculability of four loop renormalization group functions, Phys. Lett. B, 100, 65-68 (1981)
[47] Chetyrkin, K. G.; Tkachov, F. V., Integration by parts: the algorithm to calculate beta functions in 4 loops, Nucl. Phys. B, 192, 159-204 (1981)
[48] Lee, R. N., Presenting LiteRed: a tool for the loop InTEgrals REDuction (2012)
[49] Lee, R. N., LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser., 523, Article 012059 pp. (2014)
[50] Lee, R. N., Libra: a package for transformation of differential systems for multiloop integrals (2020)
[51] Binoth, T.; Heinrich, G., An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys. B, 585, 741-759 (2000) · Zbl 1042.81565
[52] Binoth, T.; Heinrich, G., Numerical evaluation of multiloop integrals by sector decomposition, Nucl. Phys. B, 680, 375-388 (2004) · Zbl 1043.81630
[53] Binoth, T.; Heinrich, G., Numerical evaluation of phase space integrals by sector decomposition, Nucl. Phys. B, 693, 134-148 (2004) · Zbl 1151.81352
[54] Heinrich, G., Sector decomposition, Int. J. Mod. Phys. A, 23, 1457-1486 (2008) · Zbl 1153.81522
[55] Bogner, C.; Weinzierl, S., Resolution of singularities for multi-loop integrals, Comput. Phys. Commun., 178, 596-610 (2008) · Zbl 1196.81010
[56] Bogner, C.; Weinzierl, S., Blowing up Feynman integrals, Nucl. Phys. B, Proc. Suppl., 183, 256-261 (2008)
[57] Kaneko, T.; Ueda, T., A geometric method of sector decomposition, Comput. Phys. Commun., 181, 1352-1361 (2010) · Zbl 1219.65014
[58] Smirnov, A. V., FIESTA4: optimized Feynman integral calculations with GPU support, Comput. Phys. Commun., 204, 189-199 (2016) · Zbl 1378.65075
[59] Tarasov, O. V., Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D, 54, 6479-6490 (1996) · Zbl 0925.81121
[60] Remiddi, E.; Tancredi, L., Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral, Nucl. Phys. B, 907, 400-444 (2016) · Zbl 1336.81038
[61] Fleischer, J.; Kotikov, A. V.; Veretin, O. L., The Differential equation method: calculation of vertex type diagrams with one nonzero mass, Phys. Lett. B, 417, 163-172 (1998)
[62] Fleischer, J.; Kotikov, A. V.; Veretin, O. L., Analytic two loop results for selfenergy type and vertex type diagrams with one nonzero mass, Nucl. Phys. B, 547, 343-374 (1999)
[63] Fleischer, J.; Kalmykov, M. Yu.; Kotikov, A. V., Two loop selfenergy master integrals on-shell, Phys. Lett. B, 462, 169-177 (1999), [Erratum: Phys. Lett. B467 (1999) 310]
[64] Kniehl, B. A.; Kotikov, A. V., Calculating four-loop tadpoles with one non-zero mass, Phys. Lett. B, 638, 531-537 (2006)
[65] Kniehl, B. A.; Kotikov, A. V., Counting master integrals: integration-by-parts procedure with effective mass, Phys. Lett. B, 712, 233-234 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.