Quasipositive links and electromagnetism. (English) Zbl 1484.57002

A link \(L\in S^3\) is called quasipositive if it is the closure of a braid of the form \(\prod\limits_{j=1}^{l}w_{j}\sigma_{i_j}w_{j}^{-1}\), where \(w_j\) is any braid word and \(\sigma_{i_j}\) is a positive standard generator of the braid group. A link \(L\in S^3\) is a transverse \(\mathbb{C}\)-link if it is the transverse intersection \(f^{-1}(0)\cap S^3\) of the vanishing set of a complex polynomial \(f : \mathbb{C}^{2} \rightarrow \mathbb{C}\) and the unit sphere \(S^3\). L. Rudolph has shown that every quasipositive link is a transverse \(\mathbb{C}\)-link in [Topology 22, 191–202 (1983; Zbl 0505.57003)]. Conversely, M. Boileau and S. Orevkov have shown that every transverse \(\mathbb{C}\)-link is quasipositive in [C. R. Acad. Sci., Paris, Sér. I, Math. 332, No. 9, 825–830 (2001; Zbl 1020.32020)].
In [in: Handbook of knot theory. Amsterdam: Elsevier. 349–427 (2005; Zbl 1097.57012)], L. Rudolph has shown that every link in \(S^3\) is the sublink of a quasipositive link. In the paper under review, the author constructively proves that every link is the sublink of a quasipositive link \(\tilde{L}\) which is a satellite of the Hopf link. Suppose \(\tilde{L}=f^{-1}(0)\cap S^3\) for some complex polynomial \(f : \mathbb{C}^{2} \rightarrow \mathbb{C}\). The construction gives upper bounds for the degrees of \(f\).
For every link \(L\), the author constructs an electromagnetic field \(\mathbf{F}_t=\mathbf{B}_{t}+i\mathbf{E}_{t}:\mathbb{R}^3\rightarrow \mathbb{C}^3\) that satisfies Maxwell’s equation and such that the set of null lines \(\mathbf{F}^{-1}_t(0,0,0)\) contains \(L\) for all times \(t\).
The author also shows that the time evolution of electromagnetic fields as given by H. Bateman’s construction [The mathematical analysis of electrical and optical wavemotion on the basis of Maxwell’s equations. Cambridge: University Press (1915; JFM 45.1324.05)] and a choice of time-dependent stereographic projection can be understood as a continuous family of contactomorphisms with knotted field lines of the electric and magnetic fields corresponding to Legendrian knots.


57K10 Knot theory
78A25 Electromagnetic theory (general)
Full Text: DOI arXiv


[1] Arrayàs, M.; Bouwmeester, D.; Trueba, J. L., Knots in electromagnetism, Phys. Rep., 667, 1-61 (2017) · Zbl 1359.78002
[2] Bateman, H., The Mathematical Analysis of Electrical and Optical Wave-Motion (1915), Dover: Dover New York · JFM 45.1324.05
[3] Berry, M., Knotted zeros in the quantum states of hydrogen, Found. Phys., 31, 659-667 (2001)
[4] Berry, M.; Dennis, M. R., Knotted and linked phase singularities in monochromatic waves, Proc. R. Soc. A, 457, 2251-2263 (2001) · Zbl 1013.35016
[5] Bode, B.; Dennis, M. R., Constructing a polynomial whose nodal set is any prescribed knot or link, J. Knot Theory Ramif., 28, Article 1850082 pp. (2019) · Zbl 1411.57010
[6] Boileau, M.; Orevkov, S., Quasi-positivité d’une courbe analytique dans une boule pseudo-convexe, C. R. Acad. Sci. Paris, 332, 1-6 (2001) · Zbl 1020.32020
[7] Brauner, K., Zur Geometrie der Funktionen zweier komplexer Veränderlichen II, III, IV, Abh. Math. Semin. Hamb., 6, 8-54 (1928)
[8] Costa e. Silva, W.; Goulart, E.; Ottoni, J. E., On spacetime foliations and electromagnetic knots, J. Phys. A, 52, Article 265203 pp. (2019)
[9] de Klerk, A. A.J. J.M.; van der Veen, R. I.; Dalhuisen, J. W.; Bouwmeester, D., Knotted optical vortices in exact solutions to Maxwell’s equations, Phys. Rev. A, 95, Article 053820 pp. (2017)
[10] Dennis, M. R.; King, R. P.; Jack, B.; O’Holleran, K.; Padgett, M., Isolated optical vortex knots, Nat. Phys., 6, 118-121 (2010)
[11] Enciso, A.; Peralta Salas, D., Knots and links in steady solutions of the Euler equations, Ann. Math., 175, 345-367 (2012) · Zbl 1238.35092
[12] Enciso, A.; Peralta Salas, D., Existence of knotted vortex tubes in steady Euler flows, Acta Math., 214, 61-134 (2015) · Zbl 1317.35184
[13] Etnyre, J. B., Legendrian and transversal knots, (Menasco, W.; Thistlewaite, M., Handbook of Knot Theory (2005), Elsevier Science), 105-185 · Zbl 1095.57006
[14] Hoyos, C.; Sircar, N.; Sonnenschein, J., New knotted solutions of Maxwell’s equations, J. Phys. A, 48, Article 255204 pp. (2015) · Zbl 1320.35338
[15] Kamien, R. D.; Mosna, R. A., The topology of dislocations in smectic liquid crystals, New J. Phys., 18, Article 053012 pp. (2016)
[16] Kedia, H.; Bialynicki-Birula, I.; Peralta-Salas, D.; Irvine, W. T.M., Tying knots in light fields, Phys. Rev. Lett., 111, Article 150404 pp. (2013)
[17] Kedia, H.; Peralta-Salas, D.; Irvine, W. T.M., When do knots in light stay knotted?, J. Phys. A, 51, Article 025204 pp. (2017) · Zbl 1383.78018
[18] Kholodenko, A. L., Optical knots and contact geometry I. From Arnol’d inequality to Ranada’s dyons, Anal. Math. Phys., 6, 163-198 (2014) · Zbl 1342.35365
[19] Liu, X.; Ricca, R. L., The Jones polynomial for fluid knots from helicity, J. Phys. A, 45, Article 205501 pp. (2012) · Zbl 1310.76047
[20] Machon, T.; Alexander, G. P., Knotted defects in nematic liquid crystals, Phys. Rev. Lett., 113, Article 027801 pp. (2014)
[21] Machon, T.; Alexander, G. P., Global defect topology in nematic liquid crystals, Proc. R. Soc. A, 472, Article 20160265 pp. (2016)
[22] Milnor, J., Singular Points of Complex Hypersurfaces (1968), Princeton University Press: Princeton University Press Princeton · Zbl 0184.48405
[23] Moffatt, H., The degree of knottedness of tangled vortex lines, J. Fluid Mech., 35, 117-129 (1969) · Zbl 0159.57903
[24] Rañada, A. F., A topological theory of the electromagnetic field, Lett. Math. Phys., 18, 97-106 (1989) · Zbl 0687.57015
[25] Ren, J.-R.; Zhu, T.; Mo, S., Knotted topological phase singularities of electromagnetic field, Commun. Theor. Phys., 50, 1071-1076 (2008) · Zbl 1392.78010
[26] Rudolph, L., Algebraic functions and closed braids, Topology, 22, 191-202 (1983) · Zbl 0505.57003
[27] Rudolph, L., Some topologically-flat surfaces in the complex projective plane, Comment. Math. Helv., 59, 592-599 (1984) · Zbl 0575.57003
[28] Rudolph, L., Quasipositivity and new knot invariants, Rev. Mat. Univ. Complut. Madr., 2, 85-109 (1989) · Zbl 0684.57003
[29] Rudolph, L., Totally tangential links of intersection of complex plane curves with round spheres, (Apanasov, B. N.; Neumann, W. D.; Reid, A. W.; Siebenmann, L., Topology ‘90 (1992), De Gruyter), 343-349 · Zbl 0785.57002
[30] Rudolph, L., Knot theory of complex plane curves, (Menasco, W.; Thistlewaite, M., Handbook of Knot Theory (2005), Elsevier Science), 329-428
[31] Sutcliffe, P., Knots in the Skyrme-Faddeev model, Proc. R. Soc. A, 463, 3001-3020 (2007) · Zbl 1133.81053
[32] Taylor, A. J.; Dennis, M. R., Vortex knots in tangled quantum eigenfunctions, Nat. Commun., 7, Article 12346 pp. (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.