×

zbMATH — the first resource for mathematics

The disjunction property of intermediate propositional logics. (English) Zbl 0739.03016
Summary: This paper is a survey of results concerning the disjunction property, Halldén-completeness, and other related properties of intermediate propositional logics and normal modal logics containing \(S4\).

MSC:
03B55 Intermediate logics
03B45 Modal logic (including the logic of norms)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. G. Anderson [1972], Superconstructive prepositional calculi with extra axiom schemes containing one variable, Zeitschrift f?r mathematische Logik und Grundlagen der Mathematik 18 (1972), pp. 113-130. · Zbl 0246.02020
[2] F. Bellissima [1989], Two classes of intermediate propositional logics without disjunction property, Archives of Mathematical Logic 28 (1989), pp. 23-33. · Zbl 0664.03019
[3] J. F. A. K. van Benthem and I. L. Humberstone [1983], Halld?n-completeness by gluing of Kripke frames, Notre Dame Journal of Formal Logic 24 (1983), pp. 426-430. · Zbl 0517.03004
[4] W. J. Blok [1976], Varieties of interior algebras, Dissertation, University of Amsterdam, 1976.
[5] A. V. Chagrov [1985], On complexity of propositional logics, Complexity Problems in Mathematical Logic, Kalinin State University, 1985, pp. 80-90 (in Russian). · Zbl 0615.03023
[6] A. V. Chagrov [1990], Undecidable properties of extensions of provability logic, parts I, II, to appear in Algebra and Logic (in Russian). · Zbl 0729.03009
[7] A. V. Chagrov [1991], The cardinality of the set of maximal intermediate logics with the disjunction property is of continuum, to appear in Mathematical USSR Zametki (in Russian). · Zbl 0739.03016
[8] A. V. Chagrov and M. V. Zakharyashchev [1989], Undecidability of the disjunction property of intermediate calculi, preprint, Institute of Applied Mathematics, the USSR Academy of Sciences, 1989, no. 57 (in Russian). · Zbl 0739.03016
[9] A. V. Chagrov and M. V. Zakharyashchev [1990], Undecidability of Halld?ncompleteness of modal logics, preprint, Institute of Applied MAthematics, the USSR Academy of Sciences, 1990, no. 82 (in Russian). · Zbl 0698.03012
[10] A. V. Chagrov and M. V. Zakharyashchev [1990a], Undecidability of the disjunction property of propositional logics and other related problems, manuscript, 1990. · Zbl 0698.03012
[11] A. V. Chagrov and M. V. Zakharyashchev [1990b], An essay in complexity aspects of intermediate calculi, Proceedings of the Forth Asian Logic Conference, CSK Education Center, Tokyo, Japan, 1990, pp. 26-29. · Zbl 0698.03012
[12] A. V. Chagrov and M. V. Zakharyashchev [1990c], Complexity problems in intermediate and modal logics, manuscript, 1990. · Zbl 0698.03012
[13] A. V. Chagrov and M. V. Zakharyashchev [1991], Modal companions of intermediate logics: A survey, to appear in Studia Logica, 1991. · Zbl 0739.03016
[14] Ja. M. Drugush [1978], A class of logics without the disjunction property, Vestnik of Moscow State University (Mathematics), no. 6 (1978), pp. 9-14 (in Russian). · Zbl 0427.03016
[15] L. L. Esakia [1979], On varieties of Grzegorczyk’s algebras, Studies in Non-Classical Logics and Set Theory, Moscow, Nauka, 1979, pp. 257-287 (in Russian).
[16] K. Fine [1974], Logics containing K4. Part I, The Journal of Symbolic Logic 39 (1974), pp. 31-42. · Zbl 0287.02010
[17] K. Fine [1985], Logics containing K4 Part II, The Journal of Symbolic Logics, 50 (1985), pp. 619-651. · Zbl 0574.03008
[18] H. Friedman [1975], The disjunction property implies the numerical existence property, Proceedings of the National Academy of Sciences of the United States of American 72 (1975), pp. 2877-2878. · Zbl 0342.02012
[19] H. Friedman and M. Sheard [1989], The equivalence of the disjunction and existence properties for modal arithmetic, The Journal of Symbolic Logic 54 (1989), pp. 1456-1459. · Zbl 0706.03018
[20] D. M. Gabbay [1970], The decidability of the Kreisel-Putnam system., The Journal of Symbolic Logic 35 (1970), pp. 431-437. · Zbl 0228.02013
[21] D. M. Gabbay and D. H. J. de Jongh [1969], A sequence of decidable finitely axiomatizable intermediate logics with the disjunction property, Technical Report, 1969. · Zbl 0289.02032
[22] D. M. Gabbay and D. H. J. de Jongh [1974], A sequence of decidability finitely axiomatizable intermediate logics with the disjunction property, The Journal of Symbolic Logic 39 (1974), pp. 67-78. · Zbl 0289.02032
[23] G. I. Galanter [1988], Halld?n-completeness for superintuitionistic logics, Proceedings of IV Soviet-Finland Symposium for Mathematical Logic, Tbilisi, 1988, pp. 81-89 (in Russian). · Zbl 0722.03020
[24] G. I. Galanter [1990], A continuum of intermediate logics which are maximal among the logics having the intuitionistic disjunctionless fragment, Proceedings of 10th USSR Conference for Mathematical Logic, Alma-Ata, 1990, p. 41 (in Russian).
[25] G. I. Galanter and A. Ju. Muravitski [1988], On Minari’s question, Proceedings of 9th USSR Conference for Mathematical Logics, Leningrad, 1988, p. 34 (in Russian).
[26] G. Gentzen [1934-5], Untersuchungen uber das logische Schliessen, Mathematische Zeitschrift, Heft 38 (1934-5), pp. 405-431. · Zbl 0010.14601
[27] K. G?del [1933], Interpretation des intuitionistischen Aussagenkalkulus, Ergebnisse eines mathematischen Kolloquiums, Heft 4 (1933), pp. 39-40.
[28] V. L. Gudovshchikov and V. V. Rybakov [1982], The disjunction property in modal logics, Proceedings of 8th USSR Conference ?Logic and Methodology of Science?, Vilnius, 1982, pp. 35-36.
[29] S. Halld?n [1951], On the semantic non-completeness of certain Lewis calculi, The Journal of Symbolic Logic 16 (1951), pp. 127-129. · Zbl 0045.15001
[30] R. Harrop [1956], On disjunctions and existential statements in intuitionistic systems of logic, Math. Annalen 5 (1956), pp. 347-361. · Zbl 0071.24504
[31] T. Hosoi [1967], On intermediate logics, I, The Journal of the Faculty of Science, University of Tokio, Section I 14 (1967), pp. 293-312. · Zbl 0188.31602
[32] T. Hosoi and H. Ono [1973], Intermediate propositional logics (A survey), The Journal of Tsuda College, 5 (1973), pp. 67-82.
[33] V. A. Jankov [1963], Relationship between deducibility in the intuitionistic propositional calculus and finite implicational structures, Soviet Mathematical Doklady 8 (1963), pp. 1203-1204. · Zbl 0143.25201
[34] D. H. J. de Jongh [1968], Investigations on the intuitionistic propositional calculus, Dissertation, University of Wisconsin, 1968. · Zbl 0213.01201
[35] D. H. J. de Jongh [1970], A characterization of the intuitionistic propositional calculus, Intuitionistic and Proof Theory, A. Kino, J. Myhill, R. E. Vesley (eds.), Amsterdam, 1970, pp. 211-217. · Zbl 0225.02020
[36] R. E. Kirk [1979], Some classes of Kripke frames characteristic for the intuitionistic logic, Zeitschrift f?r mathematische Logik und Grundlagen der Mathematik 25 (1979), pp. 409-410. · Zbl 0423.03042
[37] R. E. Kirk [1982], A result on propositional logics having the disjunction property, Notre Dame Journal of Formal Logic 23 (1982), pp. 71-74. · Zbl 0468.03015
[38] S. C. Kleene [1945], On the interpretation of intuitionistic number theory, The Journal of Symbolic Logic 10 (1945), pp. 109-124. · Zbl 0063.03260
[39] S. C. Kleene [1962], Disjunction and existence under implication in elementary intuitionistic formalisms, The Journal of Symbolic Logic 27 (1962), pp. 11-18. · Zbl 0112.24502
[40] Y. Komori [1978], Logics without Craig’s interpolation property, Proceedings of the Japan Academy 54 (1978), pp. 46-48. · Zbl 0399.03048
[41] G. Kreisel and H. Putnam [1967], Eine unableitbarkeitsbeweismethode f?r den intuitionistischen Aussgenkalkul, Archiv f?r mathematische Logik und Grundlagenforschung 3 (1957), pp. 74-78. · Zbl 0079.00702
[42] A. V. Kuznetsov [1974], On some questions of classification of superintuitonistic logics, Proceedings of 3rd USSR Conference for Mathematical Logic, Novosibirsk, 1974, pp. 119-122 (in Russian).
[43] E. J. Lemmon [1966], A note on Halld?n-incompleteness, Notre Dame Journal of Formal Logic, 7 (1966), pp. 296-300. · Zbl 0192.03202
[44] L. A. Levin [1969], Some syntactic theorems on the calculus of finite problems of Ju. T. Medvedev, Soviet Mathematical Doklady 10 (1969), pp. 288-290. · Zbl 0193.29002
[45] Logic Notebook [1986], Novosibirsk (in Russian).
[46] J. ?ukasiewicz [1952], On the intuitionistic theory of deduction, Indagationes Mathematicae 14 (1952), pp. 202-212. · Zbl 0048.00401
[47] L. L. Maksimova [1976], Principle of variable separation in propositional logics, Algebra and Logic 15 (1976), pp. 168-184 (in Russian). · Zbl 0363.02024
[48] L. L. Maksimova [1977], The Craig theorem in superintuitionistic logics and amalgamated varieties of pseudo-Boolean algebras, Algebra and Logic 16 (1977), pp. 643-681 (in Russian). · Zbl 0413.03018
[49] L. L. Maksimova [1979], Interpolation properties of superintuitionistic logics, Studia Logica 38 (1979), pp. 419-128. · Zbl 0435.03021
[50] L. L. Maksimova [1984], On the number of maximal intermediate logics having the disjunction property, Proceedings of 7th USSR Conference for Mathematical Logic, Novosibirsk, 1984, pp. 95 (in Russian).
[51] L. L. Maksimova [1986], On maximal intermediate logics with the disjunction property, Studia Logica 45 (1986), pp. 69-75. · Zbl 0635.03019
[52] L. L. Maksimova and V. V. Rybakov [1974], On lattice of normal modal logics, Algebra and Logic 13 (1974), pp. 188-216 (in Russian). · Zbl 0315.02027
[53] J. C. C. McKinsey [1953], Systems of modal logic which are not unreasonable in the sense of Halld?n, The Journal of Symbolic Logic 18 (1953), pp. 109-113. · Zbl 0053.00202
[54] J. C. C. McKinsey and A. Tarski [1948], Some theorems about the sentential calculi of Lewis and Heyting, The Journal of Symbolic Logic, 13 (1948), pp. 1-5. · Zbl 0037.29409
[55] Ju. T. Medvbdev [1963], Interpretation of logical formulas by finite problems and its connection with the theory of realizability, Soviet Mathematical Doklady 148 (1963), pp. 771-774 (in Russian).
[56] P. Miglioli, U. Moscato, M. Ornaghi, S. Quazza and G. Usberti [1989], Some results on intermediate constructive logics, Notre Dame Journal of Formal Logic, 30 (1989), pp. 543-562. · Zbl 0692.03014
[57] P. Minari [1986], Intermediate logics with the same disjunctionless fragment as intuitionistic logic, Studia Logica 45 (1986), pp. 207-222. · Zbl 0634.03021
[58] P. Minari and A. Wro?ski [1988], The property (HD) in intermediate logics: a partial solution to a problem of H. Ono, Reports on Mathematical Logic, no. 22 (1988). pp. 21-25. · Zbl 0696.03009
[59] I. Nakamura [1983], Disjunction property for some intermediate predicate logics, Reports on Mathematical Logic, no. 15 (1983), pp. 33-39. · Zbl 0537.03017
[60] I. Nishimura [1960], On formulas of one variable in intuitionistic prepositional calculus, The Journal of Symbolic Logic, 25 (1960), pp. 327-331. · Zbl 0108.00302
[61] H. Ono [1972], Some results on the intermediate logics, Publ. RIMS, Kyoto University 8 (1972), pp. 117-130. · Zbl 0253.02022
[62] H. Ono [1987], Some problems in intermediate predicate logics, Reports on Mathematical Logic, no. 21 (1987), pp. 55-67. · Zbl 0676.03016
[63] G. F. Rose [1953], Prepositional calculus and realizability, Transaction of the American Mathematical Society 75 (1953), pp. 1-19. · Zbl 0053.19901
[64] H. Sahlqvist [1975], Completeness and correspondence in the first and second order semantics for modal logic, Proceedings of the Third Scandinavian Logic Symposium, [S. Kanger (ed.), North-Holland, Amsterdam, 1975, pp. 110-143. · Zbl 0319.02018
[65] K. Sasaki [1990], The disjunction property of the logics with axioms of only one variable, manuscript, 1990.
[66] V. B. Shekhtman [1977], On incomplete prepositional logics, Soviet Mathematical Doklady 235 (1977), pp. 542-545 (in Russian).
[67] V. B. Shekhtman [1978], Undecidable superintuitionistic calculus, Soviet Mathematical Doklady 240 (1978), pp. 549-552. (in Russian). · Zbl 0417.03010
[68] T. Skura [1989], A complete syntactical characterization of the intuitionistic logic, Bulletin of the Section of Logic, 18 (1989), pp. 116-120. · Zbl 0682.03004
[69] S. K. Sobolev [1977], On finite dimensional superintuitionistic logics, Izvestija of the USSR Academy of Sciences (Mathematics), 41 (1977), pp. 963-986 (in Russian).
[70] R. M. Solovay [1976], Provability interpretation of modal logic, Israel Journal of Mathematics 25 (1976), pp. 287-304. · Zbl 0352.02019
[71] N.-Y. Suzuki [1990], Some syntactical properties of intermediate logics, to appear in Notre Dame Journal of Formal Logic. · Zbl 0745.03024
[72] M. Szatkowski [1981], On fragments of Medvedev’s logic, Studia Logica 40 (1981), pp. 39-54. · Zbl 0488.03016
[73] F. L. Varpakhovski [1965], On non-realizability of disjunction of non-realizable formulas, Soviet Mathematical Doklady 161 (1965), pp. 1257-1258 (in Russian).
[74] M. Wajsberg [1938], Untersuchungen uber den Aussagenkalkul von A. Heyting, Wiadomo?ci matematyczne 46 (1938), pp. 45-101.
[75] A. Wro?ski [1973], Intermediate logics and the disjunction property, Reports on Mathematical Logic, 1 (1973), pp. 39-51. · Zbl 0308.02027
[76] A. Wro?ski [1976], Remarks on Halld?n completeness of modal and intermediate logics, Bulletin of the Section of Logic 6 (1976), pp. 126-129.
[77] S. Zachorowski [1978], Remarks on interpolation property for intermediate logics, Reports on Mathematical Logic, 10 (1978), pp. 139-146. · Zbl 0419.03013
[78] M. V. Zakharyashchev [1983], On intermediate logics, Soviet Mathematical Doklady 27 (1983), pp. 274-277. · Zbl 0548.03009
[79] M. V. Zakharyashchev [1984], Normal modal logics containing S4, Soviet Mathematical Doklady 29 (1984), pp. 252-255. · Zbl 0595.03011
[80] M. V. Zakharyashchev [1987], On the disjunction property of intermediate and modal logics, Mathematical USSR Zametki 42 (1987), pp. 729-738 (in Russian). · Zbl 0642.03015
[81] M. V. Zakharyashchev [1988], Syntax and semantics of modal logics containing S4, Algebra and Logic 27 (1988), pp. 659-689 (in Russian). · Zbl 0686.03010
[82] M. V. Zakharyashchev [1989], Syntax and semantics of intermediate logics, Algebra and Logic 28 (1989), pp. 402-429 (in Russian).
[83] M. V. Zakharyashchev [1989a], Modal companions of intermediate logics: syntax, semantics and preservation theorems, Mathematical USSR Sbornik 180 (1989), pp. 1415-1427 (in Russian). · Zbl 0686.03011
[84] M. V. Zakharyashchev [1990], A new solution to a problem of T. Hosoi and H. Ono, manuscript, 1990. · Zbl 0698.03012
[85] M. V. Zakharyashchev and S. V. Popov [1980], On complexity of countermodels for the intuitionistic calculus, preprint, Institute of Applied Mathematics, the USSR Academy of Sciences, 1980, no. 45 (in Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.