×

Numerical approximation of the two-component PFC models for binary colloidal crystals: efficient, decoupled, and second-order unconditionally energy stable schemes. (English) Zbl 1500.65044

Summary: In this paper, we consider numerical approximations for the two-component PFC models for binary colloidal crystals. In addition to the Cahn-Hilliard type two-component PFC model that is commonly used for considering mass conservation, we also derived a new Allen-Cahn type two-component PFC model by using the \(L^2\)-gradient flow and add two nonlocal Lagrange multipliers to the system to conserve the mass for each component. For these two types of two-component PFC models, the stabilized scalar auxiliary variable (SAV) approach is adopted to develop efficient, decoupled, second-order accurate, and linear numerical schemes, where a new SAV is introduced to reformulate the models, and two extra linear stabilization terms are added to improve the stability and keep the required accuracy thus allowing large time steps. These schemes are unconditionally energy stable, mass conservative and require solving only four linear equations with constant coefficients at each time step. Numerical examples are performed to demonstrate the accuracy and energy stability of the proposed schemes, and numerous 2D and 3D simulations are also presented to show a variety of complex binary ordered patterns of phase transformation.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65T50 Numerical methods for discrete and fast Fourier transforms
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35K46 Initial value problems for higher-order parabolic systems
35K55 Nonlinear parabolic equations
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
82D25 Statistical mechanics of crystals
74N05 Crystals in solids
74F15 Electromagnetic effects in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alster, E.; Elder, KR; Hoyt, JJ; Voorhees, PW, Phase-field-crystal model for ordered crystals, Phys. Rev. E, 95, 022105 (2017) · doi:10.1103/PhysRevE.95.022105
[2] Baskaran, A.; Hu, Z.; Lowengrub, JS; Wang, C.; Wise, SM; Zhou, P., Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation, J. Comput. Phys., 250, 270-292 (2013) · Zbl 1349.65265 · doi:10.1016/j.jcp.2013.04.024
[3] Baskaran, A.; Lowengrub, JS; Wang, C.; Wise, SM, Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation, SIAM J. Numer. Anal., 51, 5, 2851-2873 (2013) · Zbl 1401.82046 · doi:10.1137/120880677
[4] Bodnarchuk, MI; Kovalenko, MV; Heiss, W.; Talapin, DV, Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor, J. Am. Chem. Soc., 132, 34, 11967-11977 (2010) · doi:10.1021/ja103083q
[5] Cai, Z.; Liu, YJ; Lu, X.; Teng, J., Fabrication of well-ordered binary colloidal crystals with extended size ratios for broadband reflectance, ACS Appl. Mater. Interf., 6, 13, 10265-10273 (2014) · doi:10.1021/am501672e
[6] Cheng, Q.; Liu, C.; Shen, J., A new Lagrange multiplier approach for gradient flows, Comput. Methods Appl. Mech. Eng., 367, 113070 (2020) · Zbl 1442.65211 · doi:10.1016/j.cma.2020.113070
[7] Cheng, Q.; Shen, J., Global constraints preserving scalar auxiliary variable schemes for gradient flows, SIAM J. Sci. Comput., 42, 4, A2489-A2513 (2020) · Zbl 1456.65087 · doi:10.1137/19M1306221
[8] Dehghan, M.; Abbaszadeh, M., The meshless local collocation method for solving multi-dimensional Cahn-Hilliard, Swift-Hohenberg and phase field crystal equations, Eng. Anal. Bound. Elem., 78, 49-64 (2017) · Zbl 1403.74285 · doi:10.1016/j.enganabound.2017.02.005
[9] Elder, KR; Grant, M., Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals, Phys. Rev. E, 70, 051605 (2004) · doi:10.1103/PhysRevE.70.051605
[10] Elder, KR; Katakowski, M.; Haataja, M.; Grant, M., Modeling elasticity in crystal growth, Phys. Rev. Lett., 88, 245701 (2002) · doi:10.1103/PhysRevLett.88.245701
[11] Elder, KR; Provatas, N.; Berry, J.; Stefanovic, P.; Grant, M., Phase-field crystal modeling and classical density functional theory of freezing, Phys. Rev. B, 75, 064107 (2007) · doi:10.1103/PhysRevB.75.064107
[12] Eldridge, M.; Madden, P.; Frenkel, D., Entropy-driven formation of a superlattice in a hard-sphere binary mixture, Nature, 365, 6441, 35 (1993) · doi:10.1038/365035a0
[13] Evers, WH; Nijs, BD; Filion, L.; Castillo, S.; Dijkstra, M.; Vanmaekelbergh, D., Entropy-driven formation of binary semiconductor-nanocrystal superlattices, Nano Lett., 10, 10, 4235-4241 (2010) · doi:10.1021/nl102705p
[14] Fallah, V.; Stolle, J.; Ofori-Opoku, N.; Esmaeili, S.; Provatas, N., Phase-field crystal modeling of early stage clustering and precipitation in metal alloys, Phys. Rev. B, 86, 134112 (2012) · doi:10.1103/PhysRevB.86.134112
[15] Ganai, N.; Saha, A.; Sengupta, S., Colloidal particles in a drying suspension: a phase field crystal approach, Eur. Phys. J. E, 36, 8, 90 (2013) · doi:10.1140/epje/i2013-13090-3
[16] Glasner, K.; Orizaga, S., Improving the accuracy of convexity splitting methods for gradient flow equations, J. Comput. Phys., 315, 52-64 (2016) · Zbl 1349.65515 · doi:10.1016/j.jcp.2016.03.042
[17] Gomez, H.; Nogueira, X., An unconditionally energy-stable method for the phase field crystal equation, Comput. Methods Appl. Mech. Eng., 249, 52-61 (2012) · Zbl 1348.74280 · doi:10.1016/j.cma.2012.03.002
[18] Guo, R.; Xu, Y., Local discontinuous Galerkin method and high order semi-implicit scheme for the phase field crystal equation, SIAM J. Sci. Comput., 38, 1, A105-A127 (2016) · Zbl 1330.65149 · doi:10.1137/15M1038803
[19] Heatley, KL; Ma, F.; Wu, N., Colloidal molecules assembled from binary spheres under an ac electric field, Soft Matter, 13, 2, 436-444 (2017) · doi:10.1039/C6SM02091G
[20] Huang, ZF; Elder, KR, Mesoscopic and microscopic modeling of island formation in strained film epitaxy, Phys. Rev. Lett., 101, 158701 (2008) · doi:10.1103/PhysRevLett.101.158701
[21] Huang, ZF; Elder, KR, Morphological instability, evolution, and scaling in strained epitaxial films: an amplitude-equation analysis of the phase-field-crystal model, Phys. Rev. B, 81, 165421 (2010) · doi:10.1103/PhysRevB.81.165421
[22] Huang, ZF; Elder, KR; Provatas, N., Phase-field-crystal dynamics for binary systems: derivation from dynamical density functional theory, amplitude equation formalism, and applications to alloy heterostructures, Phys. Rev. E, 82, 021605 (2010) · doi:10.1103/PhysRevE.82.021605
[23] Jiang, K.; Si, W., Stability of three-dimensional icosahedral quasicrystals in multi-component systems, Philos. Mag., 100, 1, 84-109 (2020) · doi:10.1080/14786435.2019.1671997
[24] Jiang, K.; Tong, J.; Zhang, P., Stability of soft quasicrystals in a coupled-mode Swift-Hohenberg model for three-component systems, Commun. Comput. Phys., 19, 3, 559-581 (2016) · Zbl 1373.82094 · doi:10.4208/cicp.181014.130715a
[25] Khalil, KS; Sagastegui, A.; Li, Y.; Tahir, MA; Socolar, JE; Wiley, BJ; Yellen, BB, Binary colloidal structures assembled through ising interactions, Nat. Commun., 3, 794 (2012) · doi:10.1038/ncomms1798
[26] Kiely, C.; Fink, J.; Brust, M.; Bethell, D.; Schiffrin, D., Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters, Nature, 396, 6710, 444 (1998) · doi:10.1038/24808
[27] Kim, MH; Im, SH; Park, OO, Fabrication and structural analysis of binary colloidal crystals with two-dimensional superlattices, Adv. Mater., 17, 20, 2501-2505 (2005) · doi:10.1002/adma.200501080
[28] Kostiainen, MA; Hiekkataipale, P.; Laiho, A.; Lemieux, V.; Seitsonen, J.; Ruokolainen, J.; Ceci, P., Electrostatic assembly of binary nanoparticle superlattices using protein cages, Nat. Nanotechnol., 8, 1, 52 (2013) · doi:10.1038/nnano.2012.220
[29] Lee, HG; Shin, J.; Lee, JY, First and second order operator splitting methods for the phase field crystal equation, J. Comput. Phys., 299, 82-91 (2015) · Zbl 1351.74156 · doi:10.1016/j.jcp.2015.06.038
[30] Li, D.; Qiao, Z., On second order semi-implicit Fourier spectral methods for 2D Cahn-Hilliard equations, J. Sci. Comput., 70, 1, 301-341 (2017) · Zbl 1434.65206 · doi:10.1007/s10915-016-0251-4
[31] Li, Q.; Li, X.; Yang, X.; Mei, L., Highly efficient and linear numerical schemes with unconditional energy stability for the anisotropic phase-field crystal model, J. Comput. Appl. Math., 383, 113122 (2021) · Zbl 1452.65165 · doi:10.1016/j.cam.2020.113122
[32] Li, Q.; Mei, L., Efficient, decoupled, and second-order unconditionally energy stable numerical schemes for the coupled Cahn-Hilliard system in copolymer/homopolymer mixtures, Comput. Phys. Commun., 260, 107290 (2021) · Zbl 07690080 · doi:10.1016/j.cpc.2020.107290
[33] Li, Q.; Mei, L.; Yang, X.; Li, Y., Efficient numerical schemes with unconditional energy stabilities for the modified phase field crystal equation, Adv. Comput. Math., 45, 3, 1551-1580 (2019) · Zbl 1420.82021 · doi:10.1007/s10444-019-09678-w
[34] Liu, J.; Cai, Y.; Deng, Y.; Sun, Z.; Gu, D.; Tu, B.; Zhao, D., Magnetic 3-D ordered macroporous silica templated from binary colloidal crystals and its application for effective removal of microcystin, Microporous Mesoporous Mater., 130, 1, 26-31 (2010) · doi:10.1016/j.micromeso.2009.10.008
[35] Mu \(\check{s}\) evi \(\check{c} \), I.: Liquid Crystal Colloids. Springer, Heidelberg (2017)
[36] Ognysta, U.; Nych, A.; Nazarenko, V.; Skarabot, M.; Musevic, I., Design of 2D binary colloidal crystals in a nematic liquid crystal, Langmuir, 25, 20, 12092-12100 (2009) · doi:10.1021/la901719t
[37] Peng, Y.; Lu, Y.; Chen, Z.; Yu, G., A binary phase field crystal study for phase segregation of liquid phase heteroepitaxial growth, Comput. Mater. Sci., 123, 65-69 (2016) · doi:10.1016/j.commatsci.2016.06.017
[38] Petris, S.; Stankovich, J.; Chan, D.; Ottewill, R., Modeling the structure of charged binary colloidal dispersions, Langmuir, 19, 4, 1121-1126 (2003) · doi:10.1021/la026641k
[39] Provatas, N.; Dantzig, J.; Athreya, B.; Chan, P.; Stefanovic, P.; Goldenfeld, N.; Elder, K., Using the phase-field crystal method in the multi-scale modeling of microstructure evolution, JOM, 59, 7, 83-90 (2007) · doi:10.1007/s11837-007-0095-3
[40] Redl, F.X., Cho, K.S., Murray, C.B., O’Brien, S.: Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423(6943), 968 (2003)
[41] Rubinstein, J.; Sternberg, P., Nonlocal reaction-diffusion equations and nucleation, IMA J. Appl. Math., 48, 3, 249-264 (1992) · Zbl 0763.35051 · doi:10.1093/imamat/48.3.249
[42] Shen, J.: Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach. In: Multiscale Modeling and Analysis for Materials Simulation, Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, Vol. 22, pp. 147-195. World Scientific, Hackensack (2012)
[43] Shen, J.; Xu, J.; Yang, J., The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys., 353, 407-416 (2018) · Zbl 1380.65181 · doi:10.1016/j.jcp.2017.10.021
[44] Shen, J.; Xu, J.; Yang, J., A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev., 61, 3, 474-506 (2019) · Zbl 1422.65080 · doi:10.1137/17M1150153
[45] Shen, J.; Yang, X., Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. Syst., 28, 4, 1669-1691 (2010) · Zbl 1201.65184 · doi:10.3934/dcds.2010.28.1669
[46] Shevchenko, E.V., Talapin, D.V., Kotov, N.A., O’Brien, S., Murray, C.B.: Structural diversity in binary nanoparticle superlattices. Nature 439(7072), 55 (2006)
[47] Shin, J.; Lee, HG; Lee, JY, First and second order numerical methods based on a new convex splitting for phase-field crystal equation, J. Comput. Phys., 327, 519-542 (2016) · Zbl 1373.82097 · doi:10.1016/j.jcp.2016.09.053
[48] Stirner, T.; Sun, J., Molecular dynamics simulation of the structural configuration of binary colloidal monolayers, Langmuir, 21, 14, 6636-6641 (2005) · doi:10.1021/la050402q
[49] Stolle, J.; Provatas, N., Characterizing solute segregation and grain boundary energy in binary alloy phase field crystal models, Comput. Mater. Sci., 81, 493-502 (2014) · doi:10.1016/j.commatsci.2013.09.002
[50] Stolle, J.F.: Phase field crystal studies of strain-mediated effects in the thermodynamics and kinetics of interfaces. Ph.D. thesis, McMaster University, Hamilton (2014)
[51] Taha, D.; Dlamini, SR; Mkhonta, SK; Elder, KR; Huang, ZF, Phase ordering, transformation, and grain growth of two-dimensional binary colloidal crystals: a phase field crystal modeling, Phys. Rev. Mater., 3, 095603 (2019) · doi:10.1103/PhysRevMaterials.3.095603
[52] Taha, D.; Mkhonta, SK; Elder, KR; Huang, ZF, Grain boundary structures and collective dynamics of inversion domains in binary two-dimensional materials, Phys. Rev. Lett., 118, 255501 (2017) · doi:10.1103/PhysRevLett.118.255501
[53] Tegze, G.; Bansel, G.; Tóth, GI; Pusztai, T.; Fan, Z.; Gránásy, L., Advanced operator splitting-based semi-implicit spectral method to solve the binary phase-field crystal equations with variable coefficients, J. Comput. Phys., 228, 5, 1612-1623 (2009) · Zbl 1156.82373 · doi:10.1016/j.jcp.2008.11.011
[54] Tegze, G.; Gránásy, L.; Tóth, GI; Douglas, JF; Pusztai, T., Tuning the structure of non-equilibrium soft materials by varying the thermodynamic driving force for crystal ordering, Soft Matter, 7, 5, 1789-1799 (2011) · doi:10.1039/C0SM00944J
[55] van Teeffelen, S.; Backofen, R.; Voigt, A.; Löwen, H., Derivation of the phase-field-crystal model for colloidal solidification, Phys. Rev. E, 79, 051404 (2009) · doi:10.1103/PhysRevE.79.051404
[56] Wan, Y.; Cai, Z.; Xia, L.; Wang, L.; Li, Y.; Li, Q.; Zhao, X., Simulation and fabrication of binary colloidal photonic crystals and their inverse structures, Mater. Lett., 63, 24-25, 2078-2081 (2009) · doi:10.1016/j.matlet.2009.06.034
[57] Wang, C.; Wise, SM, An energy stable and convergent finite-difference scheme for the modified phase field crystal equation, SIAM J. Numer. Anal., 49, 3, 945-969 (2011) · Zbl 1230.82005 · doi:10.1137/090752675
[58] Wang, PY; Pingle, H.; Koegler, P.; Thissen, H.; Kingshott, P., Self-assembled binary colloidal crystal monolayers as cell culture substrates, J. Mater. Chem. B, 3, 12, 2545-2552 (2015) · doi:10.1039/C4TB02006E
[59] Yang, X.; Han, D., Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model, J. Comput. Phys., 330, 1116-1134 (2017) · Zbl 1380.65209 · doi:10.1016/j.jcp.2016.10.020
[60] Yang, Y.; Fu, L.; Marcoux, C.; Socolar, JE; Charbonneau, P.; Yellen, BB, Phase transformations in binary colloidal monolayers, Soft Matter, 11, 12, 2404-2415 (2015) · doi:10.1039/C5SM00009B
[61] Zhang, J.; Yang, X., Numerical approximations for a new \(L^2\)-gradient flow based phase field crystal model with precise nonlocal mass conservation, Comput. Phys. Commun., 243, 51-67 (2019) · Zbl 07674815 · doi:10.1016/j.cpc.2019.05.006
[62] Zhang, J.; Yang, X., On efficient numerical schemes for a two-mode phase field crystal model with face-centered-cubic (FCC) ordering structure, Appl. Numer. Math., 146, 13-37 (2019) · Zbl 1428.65017 · doi:10.1016/j.apnum.2019.06.017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.