×

Coupling of viscous and inviscid Stokes equations via a domain decomposition method for finite elements. (English) Zbl 0738.76044

See the preview in Zbl 0724.76049.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D07 Stokes and related (Oseen, etc.) flows
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs

Citations:

Zbl 0724.76049
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] [BdV] Beir?o da Veiga, H. (1974): On theW 2,p -regularity for Solutions of Mixed Problems. J. Math. Pures Appl.53, 279-290 · Zbl 0264.35017
[2] [B] Brezzi, F.: Personal communication
[3] [BDM] Brezzi, F., Douglas, J., Jr., Marini, L.D. (1985): Two Families of Mixed Finite Elements for Second Order Elliptic Problems. Numer. Math.47, 217-235 · Zbl 0599.65072
[4] [BG] Brezzi, F., Gilardi, G. (1987): Finite Element Handbook (Ch. 1, 2, 3), H. Kardestuncer, D.H. Norrie, eds. Mc Graw-Hill, New York
[5] [BGP] Bristeau, M.O., Glowinski, R., Periaux, J. (1987): Numerical Methods for the Navier-Stokes Equations. Applications to the Simulation of Compressible and Incompressible Viscous Flows. Comput. Phys. Rep.6, 73-187
[6] [C] Ciarlet, P.G. (1978): The Finite Element Method for Elliptic Problems. North Holland, Amsterdam · Zbl 0383.65058
[7] [DS] Dupont, T., Scott, R. (1980): Polynomial Approximation of Functions in Sobolev Spaces. Math. Comput.34, 441-463 · Zbl 0423.65009
[8] [F] Feistauer, M. (1989): On the Finite Element Approximation of Functions with Noninteger Derivatives. Numer. Funct. Anal. Optimiz.10, 91-110 · Zbl 0668.65008
[9] [GQ] Gastaldi, F., Quarteroni, A. (1989/90): On the Coupling of Hyperbolic and Parabolic Systems: Analytical and Numerical Approach. Appl. Numer. Math.6, 3-31 · Zbl 0686.65084
[10] [GQS] Gastaldi, F., Quarteroni, A., Sacchi Landriani, G. (1990): On the Coupling of Two Dimensional Hyperbolic and Elliptic Equations: Analytical and Numerical Approach. In: T. Chan et al., eds., Domain Decomposition Methods for Partial Differential Equations, III. SIAM, Philadelphia, pp. 22-63 · Zbl 0709.65092
[11] [GR] Girault, V., Raviart, P.A. (1986): Finite Element Methods for the Navier-Stokes Equations: Theory and Algorithms. Springer, Berlin Heidelberg New York · Zbl 0585.65077
[12] [GPT] Glowinski, R., P?riaux, J., Terrasson, G. (1990): On the Coupling of Viscous and Inviscid Models for Compressible Fluid Flows via Domain Decomposition. In: T. Chan et al., eds., Domain Decomposition Methods for Partial Differential Equations, III. SIAM, Philadelphia, pp. 64-97
[13] [LM] Lions, J.L., Magenes, E. (1972): Nonhomogeneous Boundary Value Problems and Applications, Vol. I. Springer, Berlin Heidelberg New York · Zbl 0223.35039
[14] [MQ] Marini, L.D., Quarteroni A. (1989): A Relaxation Procedure for Domain Decomposition Methods Using Finite Elements. Numer. Math.55, 575-598 · Zbl 0671.65089
[15] [N] Nedelec, J.C. (1980): Mixed Finite Elements in 859-1. Numer. Math.35, 315-341 · Zbl 0419.65069
[16] [QV1] Quarteroni, A., Valli, A. (1990): Domain Decomposition for a Generalized Stokes Problem. In: J. Manley et al., eds., Third ECMI Proceedings. Kluwer, Dordrecht & Teubner, Stuttgart, pp. 59-74
[17] [QV2] Quarteroni, A., Valli, A. (1991): Theory and Application of Steklov-Poincar? Operators for Boundary Value problems. In: R. Spigler, ed., Applied and Industrial Mathematics. Kluwer, Dordrecht, pp. 179-203
[18] [RT] Raviart, P.A., Thomas, J.M. (1977): A Mixed Finite Element Method for 2nd Order Elliptic Problems. In: I. Galligani, E. Magenes, eds., Mathematical aspects of finite element methods. Lecture Notes in Math.606, 292-315
[19] [S] Shamir, E. (1968): Regularization of Mixed Second Order Elliptic Problems. Israel J. Math.6, 150-168 · Zbl 0157.18202
[20] [T] Terrasson, G. (1989): Thesis, Universit? P. et M. Curie, Paris
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.