×

Viral dynamics of HIV-1 with CTL immune response. (English) Zbl 1470.34137

Summary: In this paper, we investigate an in-host model for the viral dynamics of HIV-1 infection and its interaction with the CTL immune response. The model is sufficiently general to allow nonlinear forms for both viral infection and CTL response. Threshold parameters are identified that completely determine the global dynamics and outcomes of the virus-target cell-CTL interactions. Impacts of key parameter values for CTL functions and viral budding rate on the HIV-1 viral load and CD4 count are investigated using numerical simulations. Results support clinical evidence for important differences between HIV-1 nonprogressors and progressors.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34D05 Asymptotic properties of solutions to ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34D23 Global stability of solutions to ordinary differential equations
92C60 Medical epidemiology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. B. Alimonti; T. B. Ball; K. R. Fowke, Mechanisms of CD \(4^+\) T lymphocyte cell death in human immunodeficiency virus infection and AIDS, J. Gen. Virol., 84, 1649-1661 (2003) · doi:10.1099/vir.0.19110-0
[2] R. A. Arnaout; M. A. Nowak; D. Wodarz, HIV-1 dynamics revisited: Biphasic decay by cytotoxic T lymphocyte killing?, Proc. R. Soc. Lond. B, 267, 1347-1354 (2000) · doi:10.1098/rspb.2000.1149
[3] G. J. Butler; S. B. Hsu; P. Waltman, A mathematical model of the chemostat with periodic washout rate, SIAM J. Appl. Math., 45, 435-449 (1983) · Zbl 0584.92027 · doi:10.1137/0145025
[4] J. M. Conway; R. M. Ribeiro, Modeling the immune response to HIV infection, Curr. Opin. Syst. Biol., 12, 61-69 (2018)
[5] J. M. Conway; A. S. Perelson, Post-treatment control of HIV infection, Proc. Natl. Acad. Sci. USA, 112, 5467-5472 (2015) · doi:10.1073/pnas.1419162112
[6] T. Dumrongpokaphan; Y. Lenbury; R. Ouncharoen; Y. S. Xu, An intracellular delay-differential equation model of the HIV infection and immune control, Math. Model. Nat. Phenom. Epidemiol., 2, 75-99 (2007) · Zbl 1337.92205 · doi:10.1051/mmnp:2008012
[7] H. I. Freedman; M. X. Tang; S. G. Ruan, Uniform persistence and flows near a closed positively invariant set, J. Dynam. Diff. Equat., 6, 583-600 (1994) · Zbl 0811.34033 · doi:10.1007/BF02218848
[8] Y. Gao, P. F. McKay and J. F. S. Mann, Advances in HIV-1 vaccine development, Viruses, 10 (2018), 167.
[9] J. C. Gea-Banacloche; S. A. Migueles; L. Martino, Maintenance of large numbers of virus-specific CD8 + T cells in HIV-infected progressors and long-term nonprogressors, J. Immunol., 165, 1082-1092 (2000) · doi:10.4049/jimmunol.165.2.1082
[10] B. S. Goh, Global stability in many-species systems, Amer. Natur., 111, 135-143 (1997) · doi:10.1086/283144
[11] H. Gomez-Acevedo; M. Y. Li; S. Jacobson, Multi-stability In a model for CTL response to HTLV-1 infection and its implications to HAM/TSP development and prevention, Bull. Math. Biol., 72, 681-696 (2010) · Zbl 1189.92049 · doi:10.1007/s11538-009-9465-z
[12] R. A. Gruters; C. A. van Baalen; A. D. M. E. Osterhaus, The advantage of early recognition of HIV-infected cells by cytotoxic T-lymphocytes, Vaccine, 20, 2011-2015 (2002) · doi:10.1016/S0264-410X(02)00089-0
[13] H. Guo; M. Y. Li; Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Canadian Appl. Math. Quart., 14, 259-284 (2006) · Zbl 1148.34039
[14] H. Guo; M. Y. Li; Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions, Proc. Amer. Math. Soc., 136, 2793-2802 (2008) · Zbl 1155.34028 · doi:10.1090/S0002-9939-08-09341-6
[15] J. K. Hale, Ordinary Differential Equations, John Wiley & Sons, New York, 1969. · Zbl 0186.40901
[16] S. M. Hammer; M. E. Sobieszczyk; H. Janes, Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine, N. Engl. J. Med., 369, 2083-2092 (2013) · doi:10.1056/NEJMoa1310566
[17] S. B. Hsu, On global stability of a predator-prey systems, Math. Biosci., 39, 1-10 (1978) · Zbl 0383.92014 · doi:10.1016/0025-5564(78)90025-1
[18] S. Imlach; S. McBreen; T. Shirafuji, Activated peripheral CD8 lymphocytes express CD4 in vivo and are targets for infection by human immunodeficiency virus type 1, J. Virol., 75, 11555-11564 (2001) · doi:10.1128/JVI.75.23.11555-11564.2001
[19] A. Korobeinikov, A Lyapunov function for Leslie-Gower predator-prey models, Appl. Math. Lett., 14, 697-699 (2001) · Zbl 0999.92036 · doi:10.1016/S0893-9659(01)80029-X
[20] A. Korobeinikov; P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence, Math. Biosci. Eng., 1, 57-60 (2004) · Zbl 1062.92061 · doi:10.3934/mbe.2004.1.57
[21] J. P. LaSalle, The Stability of Dynamical System, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976. · Zbl 0364.93002
[22] J. Lang; M. Y. Li, Stable and transient periodic oscillations in a mathematical model for CTL response to HTLV-I infection, J. Math. Biol., 65, 181-199 (2012) · Zbl 1303.92059 · doi:10.1007/s00285-011-0455-z
[23] M. Y. Li; J. R. Graef; L. Wang; J. Karsai, Global dynamics of a SEIR model with varying total population size, Math. Biosci., 160, 191-213 (1999) · Zbl 0974.92029 · doi:10.1016/S0025-5564(99)00030-9
[24] M. Y. Li; Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Differential Equations, 248, 1-20 (2010) · Zbl 1190.34063 · doi:10.1016/j.jde.2009.09.003
[25] M. Y. Li; Z. Shuai; C. Wang, Global stability of multi-group epidemic models with distributed delays, J. Math. Anal. Appl., 361, 38-47 (2010) · Zbl 1175.92046 · doi:10.1016/j.jmaa.2009.09.017
[26] M. Y. Li; L. Wang, Backward bifurcation in a mathematical model for HIV infection in vivo with anti-retroviral treatment, Nonl. Anal. RWA, 17, 147-160 (2014) · Zbl 1325.92054 · doi:10.1016/j.nonrwa.2013.11.002
[27] J. Lin; R. Xu; X. Tian, Threshold dynamics of an HIV-1 model with both viral and cellular infections, cell-mediated and humoral immune responses, Math. Biosci. Engin., 16, 292-319 (2018) · Zbl 1497.92058 · doi:10.3934/mbe.2019015
[28] S. A. Migueles; A. C. Laborico; W. L. Shupert, HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors, Nature Immunol., 3, 1061-1068 (2002) · doi:10.1038/ni845
[29] P. W. Nelson; A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci., 179, 73-94 (2002) · Zbl 0992.92035 · doi:10.1016/S0025-5564(02)00099-8
[30] M. A. Nowak; C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272, 74-79 (1996) · doi:10.1126/science.272.5258.74
[31] G. S. Ogg; X. Jin, Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA, Science, 279, 2103-2106 (1998) · doi:10.1126/science.279.5359.2103
[32] G. S. Ogg; X. Jin, Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA, Science, 279, 2103-2106 (1998) · Zbl 0796.92016 · doi:10.1126/science.279.5359.2103
[33] A. S. Perelson; D. E. Kirschner; R. de Boer, Dynamics of HIV infection of CD \(4^+\) T cells, Math. Biosci., 114, 81-125 (1993) · Zbl 1078.92502 · doi:10.1016/0025-5564(93)90043-A
[34] A. S. Perelson; P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41, 3-44 (1999) · Zbl 1078.92502 · doi:10.1137/S0036144598335107
[35] A. S. Perelson and R. M. Ribeiro, Modeling the within-host dynamics of HIV infection, BMC Biol., 11 (2013), 96. · Zbl 1402.92409 · doi:10.1016/j.jtbi.2009.06.011
[36] L. B. Rong; A. S. Perelson, Modeling HIV persistence, the latent reservoir, and viral blips, J. Theor. Biol., 260, 308-331 (2009) · Zbl 1272.92031 · doi:10.1016/j.jtbi.2009.06.011
[37] H. Shu; L. Wang; J. Watmough, Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses, SIAM J. Appl. Math., 73, 1280-1302 (2013) · Zbl 1272.92031 · doi:10.1137/120896463
[38] V. Simon; D. D. Ho, HIV-1 dynamics in vivo: Implications for therapy, Nat. Rev. Microbiol., 1, 181-190 (2003) · doi:10.1097/COH.0b013e32832f00c0
[39] G. D. Tomarasa; B. F. Haynes, HIV-1-specific antibody responses during acute and chronic HIV-1 infection, Curr. Opin. HIV AIDS, 4, 373-379 (2009) · doi:10.1097/COH.0b013e32832f00c0
[40] J. Overbaugh and L. Morris, The Antibody Response against HIV-1, Cold Spring Harb. Perspect. Med., 2 (2012), a007039. · Zbl 1086.92035 · doi:10.1016/j.mbs.2005.12.026
[41] L. Wang; M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells, Math. Biosci., 200, 44-57 (2006) · Zbl 1279.34059 · doi:10.1016/j.mbs.2005.12.026
[42] Y. Wang; Y. C. Zhou; F. Brauer; J. M. Heffernan, Viral dynamics model with CTL immune response incorporating antiretroviral therapy, J. Math. Biol., 67, 901-934 (2013) · Zbl 1279.34059 · doi:10.1093/bmb/58.1.61
[43] J. Weber, The pathogenesis of HIV-1 infection, Br. Med. Bull., 58, 61-72 (2001) · doi:10.1093/bmb/58.1.61
[44] D. Wodarz; M. A. Nowak, Correlates of cytotoxic t-lymphocyte-mediated virus control: Implications for immunosuppressive infections and their treatment, Phil. Trans. R. Soc. Lond. B, 355, 1059-1070 (2000) · Zbl 1169.92033 · doi:10.1098/rstb.2000.0643
[45] H. Y. Zhu; X. F. Zou, Dynamics of a HIV-1 Infection model with cell-mediated immune response and intracellular delay, DCDS B, 12, 511-524 (2009) · Zbl 1169.92033 · doi:10.3934/dcdsb.2009.12.511
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.