zbMATH — the first resource for mathematics

\(q\)-deformed orthogonal and pseudo-orthogonal algebras and their representations. (English) Zbl 0735.17020
Summary: Deformed orthogonal and pseudo-orthogonal Lie algebras are constructed which differ from deformations of Lie algebras in terms of Cartan subalgebra and root vectors and which make it possible to construct representations by operators acting according to Gel’fand-Tsetlin-type formulas. Unitary representations of the \(q\)-deformed algebras \(U_ q(\text{so}_{n,1})\) are found.

17B37 Quantum groups (quantized enveloping algebras) and related deformations
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
22E43 Structure and representation of the Lorentz group
Full Text: DOI arXiv
[1] Jimbo, M., Lett. Math. Phys. 10, 63 (1985). · Zbl 0587.17004 · doi:10.1007/BF00704588
[2] Rosso, M., Comm. Math. Phys. 117, 581 (1988). · Zbl 0651.17008 · doi:10.1007/BF01218386
[3] Jimbo, M., Lect. Notes Phys. 246 334, (1986).
[4] Witten, E., preprint IASSNS-HEP-89/32, Princeton, N.J., 1989.
[5] Podlés, P. and Woronowicz, S. L., Reprot No. 20 of the Mittag-Lefler Institute, 1989.
[6] Gel’fand, I. M. and Tsetlin, M. L., Dokl. Akad. Nauk SSSR 71, 1017 (1950).
[7] Klimyk, A. U. and Gavrilik, A. M., J. Math. Phys. 20, 1624 (1979). · Zbl 0416.22017 · doi:10.1063/1.524268
[8] Klimyk, A. U., Matrix elements and Clebsch-Gordan coefficients of group representations, Nauk. Dumka, Kiev, 1979 (in Russian). · Zbl 0412.22004
[9] Gavrilik, A. M., Kachurik, I. I., and Klimyk, A. U., Preprint ITP-90-26E, Kiev, 1990.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.