×

The background field method and critical vector models. (English) Zbl 1460.81039

Summary: We use the background field method to systematically derive CFT data for the critical \(\varphi^6\) vector model in three dimensions, and the Gross-Neveu model in dimensions \(2 \leq d \leq 4\). Specifically, we calculate the OPE coefficients and anomalous dimensions of various operators, up to next-to-leading order in the \(1/N\) expansion.

MSC:

81R15 Operator algebra methods applied to problems in quantum theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory

Software:

STR
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Parisi, G., On self-consistency conditions in conformal covariant field theory, Lett. Nuovo Cim., 482, 777 (1972) · doi:10.1007/BF02757039
[2] A. M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Tear. Fiz.66 (1974) 23 [Sov. Phys. JETP39 (1974) 9] [INSPIRE].
[3] Ferrara, S.; Grillo, AF; Gatto, R., Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys., 76, 161 (1973) · doi:10.1016/0003-4916(73)90446-6
[4] El-Showk, S.; Paulos, MF; Poland, D.; Rychkov, S.; Simmons-Duffin, D.; Vichi, A., Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D, 86 (2012) · Zbl 1310.82013 · doi:10.1103/PhysRevD.86.025022
[5] D. Simmons-Duffin, The conformal bootstrap,arXiv:1602.07982 [INSPIRE]. · Zbl 1359.81165
[6] A. N. Vasiliev, Y. M. Pismak and Y. R. Khonkonen, Simple method of calculating the critical indices in the 1/N expansion, Theor. Math. Phys.46 (1981) 104 [Tear. Mat. Fiz.46 (1981) 157] [INSPIRE].
[7] A. N. Vasiliev, Y. M. Pismak and Y. R. Khonkonen, 1/N expansion: calculation of the exponents η and v in the order 1/N^2for arbitrary number of dimensions, Theor. Math. Phys.47 (1981) 465 [Tear. Mat. Fiz.47 (1981) 291] [INSPIRE].
[8] G. ’t Hooft , A planar diagram theory for strong interactions, Nucl. Phys. B72 (1974) 461 [INSPIRE].
[9] E. Witten, Baryons in the 1/N expansion, Nucl. Phys. B160 (1979) 57.
[10] K. G. Wilson and M. E. Fisher, Critical exponents in 3.99 dimensions, Phys. Rev. Lett.28 (1972) 240 [INSPIRE].
[11] Banks, T.; Zaks, A., On the phase structure of vector-like gauge theories with massless fermions, Nucl. Phys. B, 196, 189 (1982) · doi:10.1016/0550-3213(82)90035-9
[12] Bond, AD; Litim, DF, Price of asymptotic safety, Phys. Rev. Lett., 122, 211601 (2019) · doi:10.1103/PhysRevLett.122.211601
[13] G. Parisi, The theory of nonrenormalizable interactions. 1. The large N expansion, Nucl. Phys. B100 (1975) 368 [INSPIRE].
[14] Gross, DJ; Neveu, A., Dynamical symmetry breaking in asymptotically free field theories, Phys. Rev. D, 10, 3235 (1974) · doi:10.1103/PhysRevD.10.3235
[15] Zinn-Justin, J., Four fermion interaction near four-dimensions, Nucl. Phys. B, 367, 105 (1991) · doi:10.1016/0550-3213(91)90043-W
[16] Fisher, ME, Yang-Lee edge singularity and ϕ^3field theory, Phys. Rev. Lett., 40, 1610 (1978) · doi:10.1103/PhysRevLett.40.1610
[17] Fei, L.; Giombi, S.; Klebanov, IR, Critical O(N) models in 6-ϵ dimensions, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.025018
[18] Fei, L.; Giombi, S.; Klebanov, IR; Tarnopolsky, G., Three loop analysis of the critical O(N) models in 6-ε dimensions, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.045011
[19] S. Sachdev and J. Ye, Gapless spin-fluid ground state in a rand om quantum Heisenberg magnet, Phys. Rev. Lett.70 (1993) 3339.
[20] A. Kitaev, A simple model of quantum holography, talks given at KITP, April 7 and May 27 (2015).
[21] Maldacena, J.; Stanford, D., Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D, 94, 106002 (2016) · doi:10.1103/PhysRevD.94.106002
[22] Gross, DJ; Rosenhaus, V., All point correlation functions in SYK, JHEP, 12, 148 (2017) · Zbl 1383.81218 · doi:10.1007/JHEP12(2017)148
[23] Rosenhaus, V., An introduction to the SYK model, J. Phys. A, 52, 323001 (2019) · Zbl 1509.81595 · doi:10.1088/1751-8121/ab2ce1
[24] Giombi, S.; Klebanov, IR; Tarnopolsky, G., Bosonic tensor models at large N and small ϵ, Phys. Rev. D, 96, 106014 (2017) · doi:10.1103/PhysRevD.96.106014
[25] I. R. Klebanov, F. Popov and G. Tarnopolsky, TASI lectures on large N tensor models, PoS (TASI2017) 004 [arXiv:1808.09434] [INSPIRE].
[26] Pisarski, RD, Fixed point structure of (ϕ^6) in three-dimensions at large N, Phys. Rev. Lett., 48, 574 (1982) · doi:10.1103/PhysRevLett.48.574
[27] Litim, DF; Marchais, E., Critical O(N) models in the complex field plane, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.025026
[28] Jüttner, A.; Litim, DF; Marchais, E., Global Wilson-Fisher fixed points, Nucl. Phys. B, 921, 769 (2017) · Zbl 1370.81130 · doi:10.1016/j.nuclphysb.2017.06.010
[29] Goldstone, J.; Salam, A.; Weinberg, S., Broken symmetries, Phys. Rev., 127, 965 (1962) · Zbl 0106.20601 · doi:10.1103/PhysRev.127.965
[30] Bardeen, WA; Moshe, M.; Bander, M., Spontaneous breaking of scale invariance and the ultraviolet fixed point in O(N) symmetric \(( {\overline{\phi}}_3^6\) in three-dimensions) theory, Phys. Rev. Lett., 52, 1188 (1984) · doi:10.1103/PhysRevLett.52.1188
[31] Rabinovici, E.; Saering, B.; Bardeen, WA, Critical surfaces and fiat directions in a finite theory, Phys. Rev. D, 36, 562 (1987) · doi:10.1103/PhysRevD.36.562
[32] Litim, DF; Marchais, E.; Mati, P., Fixed points and the spontaneous breaking of scale invariance, Phys. Rev. D, 95, 125006 (2017) · doi:10.1103/PhysRevD.95.125006
[33] Fleming, C.; Delamotte, B.; Yabunaka, S., Finite N origin of the Bardeen-Moshe-Bander phenomenon and its extension at N = ∞ by singular fixed points, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.065008
[34] J. A. Gracey, Calculation of exponent η to O(1/N^2) in the O(N) Gross-Neveu model, Int. J. Mod. Phys. A6 (1991) 395 [Erratum ibid.6 (1991) 2755] [INSPIRE].
[35] Gracey, JA, Anomalous mass dimension at O(1/N^2) in the O(N) Gross-Neveu model, Phys. Lett. B, 297, 293 (1992) · doi:10.1016/0370-2693(92)91265-B
[36] S. E. Derkachov, N. A. Kivel, A. S. Stepanenko and A. N. Vasiliev, On calculation in 1/n expansions of critical exponents in the Gross-Neveu model with the conformal technique,hep-th/9302034 [INSPIRE].
[37] A. N. Vasiliev, S. E. Derkachov, N. A. Kivel and A. S. Stepanenko, The 1/n expansion in the Gross-Neveu model: conformal bootstrap calculation of the index eta in order 1/n^3, Theor. Math. Phys.94 (1993) 127 [Tear. Mat. Fiz.94 (1993) 179] [INSPIRE].
[38] A. N. Vasiliev and A. S. Stepanenko, The 1/n expansion in the Gross-Neveu model: Conformal bootstrap calculation of the exponent 1/v to the order 1/n^2, Theor. Math. Phys.97 (1993) 1349 [Tear. Mat. Fiz.97 (1993) 364] [INSPIRE].
[39] Gracey, JA, Computation of beta-prime (g_c) at O(1/N^2) in the O(N) Gross-Neveu model in arbitrary dimensions, Int. J. Mod. Phys. A, 9, 567 (1994) · doi:10.1142/S0217751X94000285
[40] Gracey, JA, Computation of critical exponent eta at O(1/N^3) in the four Fermi model in arbitrary dimensions, Int. J. Mod. Phys. A, 9, 727 (1994) · doi:10.1142/S0217751X94000340
[41] Manashov, AN; Skvortsov, ED, Higher-spin currents in the Gross-Neveu model at 1/n^2, JHEP, 01, 132 (2017) · Zbl 1373.81336 · doi:10.1007/JHEP01(2017)132
[42] Manashov, AN; Strohmaier, M., Correction exponents in the Gross-Neveu-Yukawa model at 1/N^2, Eur. Phys. J. C, 78, 454 (2018) · doi:10.1140/epjc/s10052-018-5902-1
[43] Gracey, JA; Luthe, T.; Schröder, Y., Four loop renormalization of the Gross-Neveu model, Phys. Rev. D, 94, 125028 (2016) · doi:10.1103/PhysRevD.94.125028
[44] Preti, M., STR: a Mathematica package for the method of uniqueness, Int. J. Mod. Phys. C, 31, 2050146 (2020) · doi:10.1142/S0129183120501466
[45] A. N. Vasiliev and M. Y. Nalimov, Analog of dimensional regularization for calculation of the renormalization group functions in the 1/n expansion for arbitrary dimension of space, Theor. Math. Phys.55 (1983) 423 [Tear. Mat. Fiz. 55 (1983) 163] [INSPIRE].
[46] Moshe, M.; Zinn-Justin, J., Quantum field theory in the large N limit: a review, Phys. Rept., 385, 69 (2003) · Zbl 1031.81065 · doi:10.1016/S0370-1573(03)00263-1
[47] Diab, K.; Fei, L.; Giombi, S.; Klebanov, IR; Tarnopolsky, G., On C_Jand C_Tin the Gross-Neveu and O(N) models, J. Phys. A, 49, 405402 (2016) · Zbl 1349.81167 · doi:10.1088/1751-8113/49/40/405402
[48] L. Fei, S. Giombi, I. R. Klebanov and G. Tarnopolsky, Yukawa CFTs and emergent supersymmetry, PTEP2016 (2016) 12C105 [arXiv:1607.05316] [INSPIRE]. · Zbl 1361.81135
[49] Gracey, JA, Four loop renormalization of ϕ^3theory in six dimensions, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.025012
[50] Goykhman, M.; Smolkin, M., Vector model in various dimensions, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.025003
[51] Weinberg, S., Six-dimensional methods for four-dimensional conformal field theories, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.045031
[52] Goykhman, M.; Shachar, T.; Smolkin, M., On fast quenches and spinning correlators, JHEP, 06, 168 (2018) · Zbl 1395.81221 · doi:10.1007/JHEP06(2018)168
[53] M. Goykhman and R. Sinha, CFT data in the Gross-Neveu model,arXiv:2011.07768 [INSPIRE].
[54] A. M. Polyakov, Conformal symmetry of critical fluctuations, JETP Lett.12 (1970) 381 [Pisma Zh. Eksp. Tear. Fiz.12 (1970) 538] [INSPIRE].
[55] Derkachov, SE; Manashov, AN, The simple scheme for the calculation of the anomalous dimensions of composite operators in the 1/N expansion, Nucl. Phys. B, 522, 301 (1998) · doi:10.1016/S0550-3213(98)00103-5
[56] Craps, B.; Hertog, T.; Turok, N., A multitrace deformation of ABJM theory, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.086007
[57] M. Smolkin and N. Turok, Dual description of a 4d cosmology,arXiv:1211.1322 [INSPIRE].
[58] Craps, B.; Hertog, T.; Turok, N., On the quantum resolution of cosmological singularities using AdS/CFT, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.043513
[59] Aharony, O.; Bergman, O.; Jafferis, DL; Maldacena, J., N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP, 10, 091 (2008) · Zbl 1245.81130 · doi:10.1088/1126-6708/2008/10/091
[60] Chai, N.; Chaudhuri, S.; Choi, C.; Komargodski, Z.; Rabinovici, E.; Smolkin, M., Thermal order in conformal theories, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.065014
[61] K. Lang and W. Rühl, Critical nonlinear O(N) σ-models at 2 < d < 4: the degeneracy of quasiprimary fields and it resolution, Z. Phys. C61 (1994) 495 [INSPIRE].
[62] Petkou, AC, C(T) and C(J) up to next-to-leading order in 1/N in the conformally invariant O(N) vector model for 2 < d < 4, Phys. Lett. B, 359, 101 (1995) · doi:10.1016/0370-2693(95)00936-F
[63] Petkou, A., Conserved currents, consistency relations and operator product expansions in the conformally invariant O(N) vector model, Annals Phys., 249, 180 (1996) · Zbl 0873.47044 · doi:10.1006/aphy.1996.0068
[64] Leonhardt, T.; Rühl, W., The minimal conformal O(N) vector σ-model at d = 3, J. Phys. A, 37, 1403 (2004) · Zbl 1047.81056 · doi:10.1088/0305-4470/37/4/023
[65] Gracey, JA, Large N_fquantum field theory, Int. J. Mod. Phys. A, 33, 1830032 (2019) · Zbl 1405.81065 · doi:10.1142/S0217751X18300326
[66] L. F. Alday, J. Henriksson and M. van Loon, An alternative to diagrams for the critical O(N) model: dimensions and structure constants to order 1/N^2, JHEP01 (2020) 063 [arXiv:1907.02445] [INSPIRE]. · Zbl 1434.81091
[67] Giombi, S.; Huang, R.; Klebanov, IR; Pufu, SS; Tarnopolsky, G., The O(N) model in 4 < d < 6: instantons and complex CFTs, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.045013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.