×

Analytic study on chiral phase transition in holographic QCD. (English) Zbl 1460.81110

Summary: The chiral symmetry breaking \(( \chi\) sb) is one of the most fundamental problems in QCD. In this paper, we calculate quark condensation analytically in a holographic QCD model dual to the Einstein-Maxwell-Dilaton (EMD) system coupled to a probe scalar field. We find that the black hole phase transition in the EMD system seriously affects \(\chi\) sb. At small chemical potential, \( \chi\) sb behaves as a crossover. For large chemical potential \(\mu > \mu_c, \chi\) sb becomes first order with exactly the same transition temperature as the black hole phase transition by a bypass mechanism. The phase diagram we obtained is qualitatively consistent with the recent results from lattice QCD simulations and NJL models.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81R40 Symmetry breaking in quantum theory
83E05 Geometrodynamics and the holographic principle
83C57 Black holes
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] F. Karsch, Lattice QCD at high temperature and density, Lect. Notes Phys.583 (2002) 209 [hep-lat/0106019] [INSPIRE]. · Zbl 0994.81124
[2] O. Philipsen, Lattice QCD at non-zero temperature and baryon density, in Les Houches Summer School: Session 93: Modern perspectives in lattice QCD: Quantum field theory and high performance computing, Les Houches France (2010), pg. 273 [arXiv:1009.4089] [INSPIRE].
[3] Maldacena, JM, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113 (1999) · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[4] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[5] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept.323 (2000) 183 [hep-th/9905111] [INSPIRE]. · Zbl 1368.81009
[6] Sakai, T.; Sugimoto, S., Low energy hadron physics in holographic QCD, Prog. Theor. Phys., 113, 843 (2005) · Zbl 1076.81623 · doi:10.1143/PTP.113.843
[7] Sakai, T.; Sugimoto, S., More on a holographic dual of QCD, Prog. Theor. Phys., 114, 1083 (2005) · Zbl 1082.81522 · doi:10.1143/PTP.114.1083
[8] G.F. de Teramond and S.J. Brodsky, Hadronic spectrum of a holographic dual of QCD, Phys. Rev. Lett.94 (2005) 201601 [hep-th/0501022] [INSPIRE].
[9] J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett.95 (2005) 261602 [hep-ph/0501128] [INSPIRE].
[10] L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys. B721 (2005) 79 [hep-ph/0501218] [INSPIRE]. · Zbl 1128.81310
[11] A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D74 (2006) 015005 [hep-ph/0602229] [INSPIRE].
[12] A. Cherman, T.D. Cohen and E.S. Werbos, The Chiral condensate in holographic models of QCD, Phys. Rev. C79 (2009) 045203 [arXiv:0804.1096] [INSPIRE].
[13] Cai, R-G; He, S.; Li, D., A hQCD model and its phase diagram in Einstein-Maxwell-Dilaton system, JHEP, 03, 033 (2012) · Zbl 1309.81263 · doi:10.1007/JHEP03(2012)033
[14] He, S.; Wu, S-Y; Yang, Y.; Yuan, P-H, Phase Structure in a Dynamical Soft-Wall Holographic QCD Model, JHEP, 04, 093 (2013) · doi:10.1007/JHEP04(2013)093
[15] Yang, Y.; Yuan, P-H, A Refined Holographic QCD Model and QCD Phase Structure, JHEP, 11, 149 (2014) · doi:10.1007/JHEP11(2014)149
[16] Yang, Y.; Yuan, P-H, Confinement-deconfinement phase transition for heavy quarks in a soft wall holographic QCD model, JHEP, 12, 161 (2015) · Zbl 1388.83059
[17] Yang, Y.; Yuan, P-H, Universal Behaviors of Speed of Sound from Holography, Phys. Rev. D, 97, 126009 (2018) · doi:10.1103/PhysRevD.97.126009
[18] M.-W. Li, Y. Yang and P.-H. Yuan, Approaching Confinement Structure for Light Quarks in a Holographic Soft Wall QCD Model, Phys. Rev. D96 (2017) 066013 [arXiv:1703.09184] [INSPIRE].
[19] M.-W. Li, Y. Yang and P.-H. Yuan, Imprints of Early Universe on Gravitational Waves from First order Phase Transition in QCD,arXiv:1812.09676 [INSPIRE].
[20] S. He, Y. Yang and P.-H. Yuan, Analytic Study of Magnetic Catalysis in Holographic QCD,arXiv:2004.01965 [INSPIRE].
[21] Colangelo, P.; Giannuzzi, F.; Nicotri, S.; Tangorra, V., Temperature and quark density effects on the chiral condensate: An AdS/QCD study, Eur. Phys. J. C, 72, 2096 (2012) · doi:10.1140/epjc/s10052-012-2096-9
[22] Li, D.; Huang, M.; Yan, Q-S, A dynamical soft-wall holographic QCD model for chiral symmetry breaking and linear confinement, Eur. Phys. J. C, 73, 2615 (2013) · doi:10.1140/epjc/s10052-013-2615-3
[23] Li, D.; Huang, M., Dynamical holographic QCD model for glueball and light meson spectra, JHEP, 11, 088 (2013) · doi:10.1007/JHEP11(2013)088
[24] Li, D.; He, S.; Huang, M., Temperature dependent transport coefficients in a dynamical holographic QCD model, JHEP, 06, 046 (2015) · Zbl 1388.83292 · doi:10.1007/JHEP06(2015)046
[25] Chelabi, K.; Fang, Z.; Huang, M.; Li, D.; Wu, Y-L, Realization of chiral symmetry breaking and restoration in holographic QCD, Phys. Rev. D, 93, 101901 (2016) · doi:10.1103/PhysRevD.93.101901
[26] Fang, Z.; He, S.; Li, D., Chiral and Deconfining Phase Transitions from Holographic QCD Study, Nucl. Phys. B, 907, 187 (2016) · Zbl 1336.81092 · doi:10.1016/j.nuclphysb.2016.04.003
[27] Chelabi, K.; Fang, Z.; Huang, M.; Li, D.; Wu, Y-L, Chiral Phase Transition in the Soft-Wall Model of AdS/QCD, JHEP, 04, 036 (2016)
[28] Li, D.; Huang, M., Chiral phase transition of QCD with N_f = 2 + 1 flavors from holography, JHEP, 02, 042 (2017) · Zbl 1377.81234 · doi:10.1007/JHEP02(2017)042
[29] Chen, J.; He, S.; Huang, M.; Li, D., Critical exponents of finite temperature chiral phase transition in soft-wall AdS/QCD models, JHEP, 01, 165 (2019) · doi:10.1007/JHEP01(2019)165
[30] O. DeWolfe, S.S. Gubser and C. Rosen, A holographic critical point, Phys. Rev. D83 (2011) 086005 [arXiv:1012.1864] [INSPIRE].
[31] DeWolfe, O.; Gubser, SS; Rosen, C., Dynamic critical phenomena at a holographic critical point, Phys. Rev. D, 84, 126014 (2011) · doi:10.1103/PhysRevD.84.126014
[32] M. Shifman, Highly excited hadrons in QCD and beyond, in 1st Workshop on Quark-Hadron Duality and the Transition to pQCD, Frascati Italy (2005), pg. 171 [hep-ph/0507246] [INSPIRE].
[33] A. Bazavov et al., The QCD Equation of State to \(\mathcal{O}\left({\mu}_B^6\right)\) from Lattice QCD, Phys. Rev. D95 (2017) 054504 [arXiv:1701.04325] [INSPIRE].
[34] Farias, RLS; Timoteo, VS; Avancini, SS; Pinto, MB; Krein, G., Thermo-magnetic effects in quark matter: Nambu-Jona-Lasinio model constrained by lattice QCD, Eur. Phys. J. A, 53, 101 (2017) · doi:10.1140/epja/i2017-12320-8
[35] E. Witten, Deformations of JT Gravity and Phase Transitions,arXiv:2006.03494 [INSPIRE].
[36] Castorina, P.; Iorio, A., Confinement Horizon and QCD Entropy, Int. J. Mod. Phys. A, 33, 1850211 (2018) · doi:10.1142/S0217751X18502111
[37] Gürsoy, U.; Jarvinen, M.; Nijs, G., Holographic QCD in the Veneziano Limit at a Finite Magnetic Field and Chemical Potential, Phys. Rev. Lett., 120, 242002 (2018) · doi:10.1103/PhysRevLett.120.242002
[38] Gregory, R.; Laflamme, R., Black strings and p-branes are unstable, Phys. Rev. Lett., 70, 2837 (1993) · Zbl 1051.83544 · doi:10.1103/PhysRevLett.70.2837
[39] Gregory, R.; Laflamme, R., The Instability of charged black strings and p-branes, Nucl. Phys. B, 428, 399 (1994) · Zbl 1037.83509 · doi:10.1016/0550-3213(94)90206-2
[40] Gubser, SS; Mitra, I., Instability of charged black holes in Anti-de Sitter space, Clay Math. Proc., 1, 221 (2002) · Zbl 1051.83516
[41] Gubser, SS; Mitra, I., The Evolution of unstable black holes in anti-de Sitter space, JHEP, 08, 018 (2001) · doi:10.1088/1126-6708/2001/08/018
[42] H.S. Reall, Classical and thermodynamic stability of black branes, Phys. Rev. D64 (2001) 044005 [hep-th/0104071] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.