×

Three-dimensional fourth-order time-fractional parabolic partial differential equations and their analytical solution. (English) Zbl 1512.35364

Summary: In this study, the fractional reduced differential transform method (FRDTM) is employed to solve three-dimensional fourth-order time-fractional parabolic partial differential equations with variable coefficients. The fractional derivative used in this study is in the Caputo sense. A few important lemmas which are essential to solve the problems using the proposed method are proved. The novelty of this method is that it uses appropriate initial conditions and finds the solution to the problems without any discretization, linearization, perturbation, or any restrictive assumptions. Two numerical examples are considered in order to validate the efficiency and reliability of the method. Furthermore, the FRDTM solution when \(\alpha = 1\) is compared with other analytical methods available in the existing literature. Computational results are shown in tables and graphs. The obtained results revealed that the method is capable and simple to solve fractional partial differential equations. The software used for the calculations in this study is Mathematica 7.

MSC:

35K25 Higher-order parabolic equations

Software:

Mathematica
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chatibi, Y.; El Kinani, E. H.; Ouhadan, A., Variational calculus involving nonlocal fractional derivative with Mittag-Leffler kernel, Chaos, Solitons & Fractals, 118, 117-121 (2019) · Zbl 1442.49026 · doi:10.1016/j.chaos.2018.11.017
[2] Podlubny, I., Fractional Differential Equations (1999), San Diego, CA, USA: Academic Press, San Diego, CA, USA · Zbl 0918.34010
[3] Tayyan, B. A.; Sakka, A. H., Lie symmetry analysis of some conformable fractional partial differential equations, Arabian Journal of Mathematics, 9, 201-212 (2020) · Zbl 1436.35324 · doi:10.1007/s40065-018-0230-8
[4] Chatibi, Y.; El Kinani, E. H.; Ouhadan, A., Lie symmetry analysis of conformable differential equations, AIMS Mathematics, 4, 4, 1133-1144 (2019) · Zbl 1484.34097 · doi:10.3934/math.2019.4.1133
[5] Bishehniasar, M.; Salahshour, S.; Ahmadian, A.; Ismail, F.; Baleanu, D., An Accurate Approximate- Analytical Technique for Solving Time-Fractional Partial Differential equations, Complexity, 2017 (2017) · Zbl 1379.35343 · doi:10.1155/2017/8718209
[6] Baleanu, D.; Machado, J. A. T.; Luo, A. C. J., Fractional Dynamics and Control (2011), New York, NY, USA: Springer Science & Business Media, New York, NY, USA
[7] Das, S., Analytical solution of a fractional diffusion equation by variational iteration method, Computers & Mathematics with Applications, 57, 3, 483-487 (2009) · Zbl 1165.35398 · doi:10.1016/j.camwa.2008.09.045
[8] Elsaid, A., The variational iteration method for solving Riesz fractional partial differential equations, Computers & Mathematics with Applications, 60, 7, 1940-1947 (2010) · Zbl 1205.65287 · doi:10.1016/j.camwa.2010.07.027
[9] Chatibi, Y.; El Kinani, E. H.; Ouhadan, A., On the discrete symmetry analysis of some classical andfractional differential equations, Mathematical Methods in the Applied Sciences, 1-11 (2019) · Zbl 1469.76081 · doi:10.1002/mma.6064
[10] Chatibi, Y.; El Kinani, E. H.; Ouhadan, A., Lie symmetry analysis and conservation laws for the time fractional Black-Scholes equation, International Journal of Geometric Methods in Modern Physics, 17, 1 (2020) · Zbl 07806154 · doi:10.1142/S0219887820500103
[11] He, J. H., Homotopy perturbation method: a new nonlinear analytical technique, Applied Mathematics and Computation, 135, 73-79 (2003) · Zbl 1030.34013 · doi:10.1016/S0096-3003(01)00312-5
[12] Tchier, F.; Inc, M.; Yusuf, A., Symmetry analysis, exact solutions and numerical approximations for the space-time Carleman equation in nonlinear dynamical systems, European Physical Journal Plus, 134, 1-18 (2019) · doi:10.1140/epjp/i2019-12586-1
[13] Yusuf, A.; Inc, M.; Bayram, M., Soliton solutions for Kudryashov-Sinelshchikov equation, Sigma Journal of Engineering and Natural Sciences, 37, 439-444 (2019)
[14] Inc, M.; Yusuf, A.; Aliyu, A. I., Dark and singular optical Solitons for the conformable space time nonlinear Schrodinger equation with Kerr and power law nonlinearity, Optik, 162, 65-75 (2018) · doi:10.1016/j.ijleo.2018.02.085
[15] Inc, M.; Yusuf, A.; Aliyu, A. I., Lie symmetry analysis and explicit solutions for the time generalized Burgers-Huxley equation, Optical and Quantum Electronics, 50, 1-16 (2018) · doi:10.1007/s11082-018-1373-8
[16] Akgul, A., Reproducing kernel method for fractional derivative with non-local and non-singular kernel, Fractional Derivatives with Mittag-Leffler Kernel, Series of Studies in Systems, Decision and Control (2019), Cham, Switzerland: Springer, Cham, Switzerland · Zbl 1446.34006
[17] Akgül, A., A novel method for a fractional derivative with non-local and non-singular kernel, Chaos, Solitons & Fractals, 114, 478-482 (2018) · Zbl 1415.34007 · doi:10.1016/j.chaos.2018.07.032
[18] Sakar, M. G.; Saldir, O.; Akgul, A., A novel technique for fractional Bagley-Torvik equation, Proceedings of the National Academy of Sciences, India, Section A: Physical Sciences, 89, 2, 1-7 (2018) · doi:10.1007/s40010-018-0488-4
[19] Modanli, M.; Akgül, A., Numerical solution of fractional telegraph differential equations by theta-method, The European Physical Journal Special Topics, 226, 16-18, 3693-3703 (2017) · doi:10.1140/epjst/e2018-00088-6
[20] Akgul, E. K., Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives, Chaos, 29, 2 (2019) · Zbl 1409.34006 · doi:10.1063/1.5084035
[21] Akgül, E. K.; Orcan, B.; Akgül, A., Solving higher-order fractional differential equations by reproducing kernel Hilbert space method, Journal of Advanced Physics, 7, 1, 98-102 (2018) · doi:10.1166/jap.2018.1392
[22] Keskin, Y.; Oturanc, G., Reduced differential transform method: a new approach to fractional partial differential equations, Nonlinear Science Letters A, 1, 61-72 (2010)
[23] Srivastava, V. K.; Awasthi, M. K.; Tamsir, M., RDTM solution of Caputo time fractional-order hyperbolic Telegraph equation, AIP Advances, 3 (2013) · doi:10.1063/1.4799548
[24] Srivastava, V. K.; Awasthi, M. K.; Kumar, S., Analytical approximations of two and three dimensional time-fractional telegraphic equation by reduced differential transform method, Egyptian Journal of Basic and Applied Sciences, 1, 1, 60-66 (2014) · doi:10.1016/j.ejbas.2014.01.002
[25] Srivastava, V. K.; Kumar, S.; Awasthi, M. K.; Singh, B. K., Two-dimensional time fractional-order biological population model and its analytical solution, Egyptian Journal of Basic and Applied Sciences, 1, 1, 71-76 (2014) · doi:10.1016/j.ejbas.2014.03.001
[26] Srivastava, V. K.; Mishra, N.; Kumar, S.; Singh, B. K.; Awasthi, M. K., Reduced differential transform method for solving (1 + n)-dimensional Burgers’ equation, Egyptian Journal of Basic and Applied Sciences, 1, 2, 115-119 (2014) · doi:10.1016/j.ejbas.2014.05.001
[27] Yadeta, D. M.; Gizaw, A. K.; Mussa, Y. O., Approximate analytical solution of one-dimensional Beam equations by using time-fractional reduced differential transform method, Journal of Applied Mathematics, 2020 (2020) · Zbl 1499.65604 · doi:10.1155/2020/7627385
[28] Amin, M.; Abbas, M.; Iqbal, M. K.; Baleanu, D., Non-polynomial quintic spline for numerical solution of fourth-order time fractional partial differential equations, Advances in Difference Equations, 183 (2019) · Zbl 1459.35372 · doi:10.1186/s13662-019-2125-1
[29] Tariq, H.; Akram, G., Quintic spline technique for time fractional fourth-order partial differential equation, Numerical Methods for Partial Differential Equations, 33, 2, 445-466 (2017) · Zbl 1361.65071 · doi:10.1002/num.22088
[30] Singh, B. K., Fractional reduced differential transform method for numerical computation of a system of linear and nonlinear fractional partial differential equations, International Journal of Open Problems in Computer Science and Mathematics, 9, 3, 20-38 (2016) · doi:10.12816/0033742
[31] Rawashdeh, M. S., A reliable method for the space-time fractional Burgers and time-fractional CahnAllen equations via the FRDTM, Advances in Difference Equations, 99, 14 (2017) · Zbl 1422.35170 · doi:10.1186/s13662-017-1148-8
[32] Abuasad, S.; Hashim, I.; Abdul Karim, S. A., Modified fractional reduced differential transform method for the solution of multiterm time-fractional diffusion equations, Advances in Mathematical Physics, 2019 (2019) · Zbl 1429.35191 · doi:10.1155/2019/5703916
[33] Lu, D.; Wang, J.; Arshad, M.; Abdullah; Ali, A., Fractional reduced differential transform method for space-time fractional order Heat-like and wave-like partial differential equations, Journal of Advanced Physics, 6, 4, 598-607 (2018) · doi:10.1166/jap.2017.1383
[34] Arshad, M.; Lu, D.; Wang, J., (N + 1)-dimensional fractional reduced differential transform method for fractional order partial differential equations, Communications in Nonlinear Science and Numerical Simulation, 48, 509-519 (2017) · Zbl 1510.65277 · doi:10.1016/j.cnsns.2017.01.018
[35] Biazar, J.; Ghazvini, H., He’s variational iteration method for fourth-order parabolic equations, Computers & Mathematics with Applications, 54, 7-8, 1047-1054 (2007) · Zbl 1267.65147 · doi:10.1016/j.camwa.2006.12.049
[36] Wazwaz, A.-M., Exact solutions for variable coefficients fourth-order parabolic partial differential equations in higher-dimensional spaces, Applied Mathematics and Computation, 130, 2-3, 415-424 (2002) · Zbl 1024.35037 · doi:10.1016/s0096-3003(01)00109-6
[37] Ibis, B., Application of reduced differential transformation method for solving fourth-order parabolic partial differential equations, Journal of Mathematics and Computer Science, 12, 02, 124-131 (2014) · doi:10.22436/jmcs.012.02.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.