×

zbMATH — the first resource for mathematics

Uniform tree lattices. (English) Zbl 0734.05052
Necessary and sufficient conditions for a locally finite tree to admit a uniform lattice are studied.

MSC:
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
20F65 Geometric group theory
22E40 Discrete subgroups of Lie groups
05C05 Trees
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Roger Alperin and Hyman Bass, Length functions of group actions on \Lambda -trees, Combinatorial group theory and topology (Alta, Utah, 1984) Ann. of Math. Stud., vol. 111, Princeton Univ. Press, Princeton, NJ, 1987, pp. 265 – 378. · Zbl 0978.20500
[2] Hyman Bass, Covering theory for graphs of groups, J. Pure Appl. Algebra 89 (1993), no. 1-2, 3 – 47. · Zbl 0805.57001
[3] -, Group actions on non-archimedean trees, Proc. MSRI Conf. on Arboreal Group Theory, 1988.
[4] H. Bass, J. Milnor, and J.-P. Serre, Solution of the congruence subgroup problem for \?\?_{\?}(\?\ge 3) and \?\?_{2\?}(\?\ge 2), Inst. Hautes Études Sci. Publ. Math. 33 (1967), 59 – 137.
[5] A. Borel, Commensurability classes and volumes of hyperbolic 3-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), no. 1, 1 – 33. · Zbl 0473.57003
[6] F. Bruhat and J. Tits, Groupes algébriques simples sur un corps local, Proc. Conf. Local Fields (Driebergen, 1966) Springer, Berlin, 1967, pp. 23 – 36 (French). · Zbl 0263.14014
[7] J. Dieudonné, Treatise on analysis. Vol. II, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. Enlarged and corrected printing; Translated by I. G. Macdonald; With a loose erratum; Pure and Applied Mathematics, 10-II. · Zbl 0315.46001
[8] Paul S. Fan, Amalgams of prime index, J. Algebra 98 (1986), no. 2, 375 – 421. · Zbl 0581.20043
[9] Dragomir Ž. Djoković, A class of finite group-amalgams, Proc. Amer. Math. Soc. 80 (1980), no. 1, 22 – 26. · Zbl 0441.20015
[10] David M. Goldschmidt, Automorphisms of trivalent graphs, Ann. of Math. (2) 111 (1980), no. 2, 377 – 406. · Zbl 0475.05043
[11] Wilfried Imrich, Subgroup theorems and graphs, Combinatorial mathematics, V (Proc. Fifth Austral. Conf., Roy. Melbourne Inst. Tech., Melbourne, 1976) Springer, Berlin, 1977, pp. 1 – 27. Lecture Notes in Math., Vol. 622. · Zbl 0541.05041
[12] R. Kulkarni, Lattices on trees, automorphisms of graphs, free groups, surfaces, preprint, CUNY, 1988.
[13] Frank Thomson Leighton, Finite common coverings of graphs, J. Combin. Theory Ser. B 33 (1982), no. 3, 231 – 238. · Zbl 0488.05033
[14] Alexander Lubotzky, Trees and discrete subgroups of Lie groups over local fields, Bull. Amer. Math. Soc. (N.S.) 20 (1989), no. 1, 27 – 30. · Zbl 0676.22007
[15] Дискретные подгруппы групп Ли., Издат. ”Мир”, Мосцощ, 1977 (Руссиан). Транслатед фром тхе Енглиш бы О. В. Šварцман; Едитед бы Ѐ. Б. Винберг; Щитх а супплемент ”Аритхметициты оф ирредуцибле латтицес ин семисимпле гроупс оф ранк греатер тхан 1” бы Г. А. Маргулис.
[16] Jean-Pierre Serre, Trees, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. · Zbl 0548.20018
[17] Jean-Pierre Serre, Cohomologie des groupes discrets, Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970) Princeton Univ. Press, Princeton, N.J., 1971, pp. 77 – 169. Ann. of Math. Studies, No. 70 (French).
[18] John R. Stallings, Topology of finite graphs, Invent. Math. 71 (1983), no. 3, 551 – 565. , https://doi.org/10.1007/BF02095993 S. M. Gersten, Intersections of finitely generated subgroups of free groups and resolutions of graphs, Invent. Math. 71 (1983), no. 3, 567 – 591. · Zbl 0521.20014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.