×

zbMATH — the first resource for mathematics

Several classes of complete permutation polynomials with Niho exponents. (English) Zbl 07331815
Summary: In this paper, eight classes of complete permutation polynomials with Niho exponents are proposed. Based on certain polynomials over \(\mathbb{F}_{q^2}\) whose \((q-1)\)-th powers are 1 or monomials on the unit circle, three classes of complete permutation polynomials are obtained. In addition, we completely characterize the complete permutation properties of five classes of known permutation trinomials.
MSC:
11T06 Polynomials over finite fields
11T55 Arithmetic theory of polynomial rings over finite fields
05A05 Permutations, words, matrices
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akbary, A.; Ghioca, D.; Wang, Q., On constructing permutations of finite fields, Finite Fields Appl., 17, 51-67 (2011) · Zbl 1281.11102
[2] Akbary, A.; Wang, Q., On polynomials of the form \(x^r f( x^{\frac{ q - 1}{ l}})\), Int. J. Math. Math. Sci., 2007, Article 23408 pp. (2007) · Zbl 1135.11341
[3] Alahmadi, A.; Akhazmi, H.; Helleseth, T.; Hijazi, R.; Muthana, N. M.; Solé, P., On the lifted Zetterberg code, Des. Codes Cryptogr., 80, 3, 561-576 (2016) · Zbl 1348.94090
[4] Bartoli, D., On a conjecture about a class of permutation trinomials, Finite Fields Appl., 52, 30-50 (2018) · Zbl 1404.11133
[5] Bartoli, D.; Giulietti, M.; Quoos, L.; Zini, G., Complete permutation polynomials from exceptional polynomials, J. Number Theory, 176, 46-66 (2017) · Zbl 1364.11150
[6] Bartoli, D.; Giulietti, M.; Zini, G., On monomial complete permutation polynomials, Finite Fields Appl., 41, 132-158 (2016) · Zbl 1372.11107
[7] Bassalygo, L. A.; Zinoviev, V. A., Permutation and complete permutation polynomials, Finite Fields Appl., 33, 198-211 (2015) · Zbl 1368.11126
[8] Berlekamp, E. R.; Rumsey, H.; Solomon, G., On the solution of algebraic equations over finite fields, Inf. Control, 10, 6, 553-564 (1967) · Zbl 0166.04803
[9] Charpin, P.; Kyureghyan, G. M., Cubic monomial bent functions: a subclass of \(\mathcal{M} \), SIAM J. Discrete Math., 22, 2, 650-665 (2008) · Zbl 1171.11062
[10] Dodunekov, S. M.; Nilsson, J. E.M., Algebraic decoding of the Zetterberg code, IEEE Trans. Inf. Theory, 38, 5, 1570-1573 (1992) · Zbl 0756.94014
[11] Feng, X.; Lin, D.; Wang, L.; Wang, Q., Further results on complete permutation monomials over finite fields, Finite Fields Appl., 57, 47-59 (2019) · Zbl 07067778
[12] Hou, X., Determination of a type of permutation trinomials over finite fields, II, Finite Fields Appl., 35, 16-35 (2015) · Zbl 1343.11093
[13] Hou, X., Permutation polynomials over finite fields−a survey of recent advances, Finite Fields Appl., 32, 82-119 (2015) · Zbl 1325.11128
[14] Hou, X., On a class of permutation trinomials in characteristic 2, Cryptogr. Commun., 11, 6, 1199-1210 (2019) · Zbl 1446.11206
[15] Hou, X., On the Tu-Zeng permutation trinomial of type \((\frac{ 1}{ 4}, \frac{ 3}{ 4})\) · Zbl 07302668
[16] Hou, X.; Tu, Z.; Zeng, X., Determination of a class of permutation trinomials in characteristic three, Finite Fields Appl., 61, Article 101596 pp. (2020) · Zbl 07160767
[17] Kyureghyan, G.; Zieve, M., Permutation polynomials of the form \(x + \gamma \operatorname{Tr}( x^k)\), (Contemporary Developments in Finite Fields and Applications (2016), World Scientific), 178-194 · Zbl 1382.11090
[18] Laigle-Chapuy, Y., Permutation polynomials and applications to coding theory, Finite Fields Appl., 13, 1, 58-70 (2007) · Zbl 1107.11048
[19] Li, K.; Qu, L.; Wang, Q., New constructions of permutation polynomials of the form \(x^r h ( x^{q - 1} )\) over \(\mathbb{F}_{q^2} \), Des. Codes Cryptogr., 86, 10, 2379-2405 (2018) · Zbl 06933694
[20] Li, L.; Li, C.; Li, C.; Zeng, X., New classes of complete permutation polynomials, Finite Fields Appl., 55, 177-201 (2019) · Zbl 1401.05016
[21] Li, N.; Zeng, X., A survey on the applications of Niho exponents, Cryptogr. Commun., 11, 509-548 (2019) · Zbl 1412.12001
[22] Lidl, R.; Niederreiter, H., Finite Fields, Encyclopedia of Mathematics and its Applications, vol. 20 (1997), Cambridge University Press: Cambridge University Press Cambridge
[23] Lucas, E., Sur les congruences des nombres eulériens et les coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. Fr., 6, 49-54 (1877-1878) · JFM 10.0139.04
[24] Ma, J.; Zhang, T.; Feng, T.; Ge, G., Some new results on permutation polynomials over finite fields, Des. Codes Cryptogr., 83, 425-443 (2017) · Zbl 1369.11091
[25] Mann, H. B., The construction of orthogonal Latin squares, Ann. Math. Stat., 13, 418-423 (1942) · Zbl 0060.02706
[26] (Mullen, G. L.; Panario, D., Handbook of Finite Fields (2013), CRC Press: CRC Press Boca Raton) · Zbl 1319.11001
[27] Niederreiter, H.; Robinson, K. H., Complete mappings of finite fields, J. Aust. Math. Soc. A, 33, 2, 197-212 (1982) · Zbl 0495.12018
[28] Niho, Y., Multi-valued cross-correlation functions between two maximal linear recursive sequences (1972), University of Southern California: University of Southern California Los Angeles, PhD dissertation
[29] Park, Y. H.; Lee, J. B., Permutation polynomials and group permutation polynomials, Bull. Aust. Math. Soc., 63, 67-74 (2001) · Zbl 0981.11039
[30] Sarkar, S.; Bhattacharya, S.; Cesmelioglu, A., On some permutation binomials of the form \(x^{\frac{ 2^n - 1}{ k} + 1} + a x\) over \(\mathbb{F}_{2^n} \): existence and count, (WAIFI. WAIFI, 2012. WAIFI. WAIFI, 2012, Lect. Notes Comput. Sci., vol. 7369 (2012), Springer), 236-246 · Zbl 1292.11132
[31] Tu, Z.; Zeng, X., Two classes of permutation trinomials with Niho exponents, Finite Fields Appl., 53, 99-112 (2018) · Zbl 1392.05005
[32] Tu, Z.; Zeng, X., A class of permutation trinomials over finite fields of odd characteristic, Cryptogr. Commun., 11, 4, 563-583 (2019) · Zbl 1415.05006
[33] Tu, Z.; Zeng, X.; Hu, L., Several classes of complete permutation polynomials, Finite Fields Appl., 25, 182-193 (2014) · Zbl 1284.05012
[34] Tu, Z.; Zeng, X.; Li, C.; Helleseth, T., A class of new permutation trinomials, Finite Fields Appl., 50, 178-195 (2018) · Zbl 1380.05002
[35] Tu, Z.; Zeng, X.; Mao, J.; Zhou, J., Several classes of complete permutation polynomials over finite fields of even characteristic, Finite Fields Appl., 68, Article 101737 pp. (2020) · Zbl 07312719
[36] Tuxanidy, A.; Wang, Q., Compositional inverses and complete mappings over finite fields, Discrete Appl. Math., 217, 318-329 (2017) · Zbl 1372.11111
[37] Wan, D.; Lidl, R., Permutation polynomials of the form \(x^r f( x^{\frac{ q - 1}{ d}})\) and their group structure, Monatshefte Math., 112, 149-163 (1991) · Zbl 0737.11040
[38] Wang, Q., Cyclotomic mapping permutation polynomials over finite fields, (Sequences, Subsequences, and Consequences. Sequences, Subsequences, and Consequences, International Workshop, SSC 2007, Los Angeles, CA, USA, May 31-June 2, 2007. Sequences, Subsequences, and Consequences. Sequences, Subsequences, and Consequences, International Workshop, SSC 2007, Los Angeles, CA, USA, May 31-June 2, 2007, Lecture Notes in Comput. Sci., vol. 4893 (2007), Springer: Springer Berlin), 119-128 · Zbl 1154.11342
[39] Wang, Q., Polynomials over finite fields: an index approach, (Proceedings of Pseudo-Randomness and Finite Fields, Multivariate Algorithms and Their Foundations in Number Theory, Combinatorics and Finite Fields. Difference Sets, Polynomials, Pseudorandomness and Applications. Proceedings of Pseudo-Randomness and Finite Fields, Multivariate Algorithms and Their Foundations in Number Theory, Combinatorics and Finite Fields. Difference Sets, Polynomials, Pseudorandomness and Applications, October 15-19, Linz, 2018 (2019)), 319-348
[40] Winterhof, A., Generalizations of complete mappings of finite fields and some applications, J. Symb. Comput., 64, 42-52 (2014) · Zbl 1332.11107
[41] Wu, B.; Lin, D., On constructing complete permutation polynomials over finite fields of even characteristic, Discrete Appl. Math., 184, 213-222 (2015) · Zbl 1311.05009
[42] Wu, G.; Li, N.; Helleseth, T.; Zhang, Y., Some classes of monomial complete permutation polynomials over finite fields of characteristic two, Finite Fields Appl., 28, 148-165 (2014) · Zbl 1314.11073
[43] Wu, G.; Li, N.; Helleseth, T.; Zhang, Y., Some classes of complete permutation polynomials over \(\mathbb{F}_q\), Sci. China Math., 58, 2081-2094 (2015) · Zbl 1325.05013
[44] Xu, G.; Cao, X., Complete permutation polynomials over finite fields of odd characteristic, Finite Fields Appl., 31, 228-240 (2015) · Zbl 1320.11121
[45] Yuan, Y.; Tong, Y.; Zhang, H., Complete mapping polynomials over finite field \(\mathbb{F}_{16} \), (Arithmetic of Finite Fields. Arithmetic of Finite Fields, Lect. Notes Comput. Sci., vol. 4547 (2007), Springer: Springer Berlin), 147-158 · Zbl 1213.11193
[46] Zieve, M., On some permutation polynomials over \(\mathbb{F}_q\) of the form \(x^r h( x^{\frac{ q - 1}{ d}})\), Proc. Am. Math. Soc., 137, 2209-2216 (2009) · Zbl 1228.11177
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.