×

Pushing run-and-tumble particles through a rugged channel. (English) Zbl 1504.82045

Summary: We analyze the case of run-and-tumble particles pushed through a rugged channel both in the continuum and on the lattice. The current characteristic is non-monotone in the external field with the appearance of a current and nontrivial density profile even at zero field for asymmetric obstacles. If an external field is exerted against the direction of that zero-field current, then the resulting current decreases with persistence at small field and increases with persistence at large field. Activity in terms of self-propulsion increases the maximal current and postpones dying. We give an effective theoretical description with wider validity.

MSC:

82C70 Transport processes in time-dependent statistical mechanics
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Maes C 2020 Frenesy: time-symmetric dynamical activity in nonequilibria Phys. Rep.850 1-33 · Zbl 1439.82022 · doi:10.1016/j.physrep.2020.01.002
[2] Maes C 2018 Non-Dissipative Effects in Nonequilibrium Systems(Springer Briefs in Complexity) (Berlin: Springer) (https://doi.org/10.1007/978-3-319-67780-4) · Zbl 1372.82001 · doi:10.1007/978-3-319-67780-4
[3] Zia R K P, Praestgaard E L and Mouritsen O G 2002 Getting more from pushing less: negative specific heat and conductivity in nonequilibrium steady states Am. J. Phys.70 384 · doi:10.1119/1.1427088
[4] Baerts P, Basu U, Maes C and Safaverdi S 2013 The frenetic origin of negative differential response Phys. Rev. E 88 052109 · doi:10.1103/physreve.88.052109
[5] Jack R L, Kelsey D, Garrahan J P and Chandler D 2008 Negative differential mobility of weakly driven particles in models of glass formers Phys. Rev. E 78 011506 · doi:10.1103/physreve.78.011506
[6] Bénichou O, Illien P, Oshanin G, Sarracino A and Voituriez R 2014 Microscopic theory for negative differential mobility in crowded environments Phys. Rev. Lett.113 268002 · doi:10.1103/physrevlett.113.268002
[7] Falasco G, Cossetto T, Penocchio E and Esposito M 2018 Negative differential response in chemical reactions (arXiv:1812.11245v1)
[8] Reichhardt C and Reichhardt C J O 2020 Directional clogging and phase separation for DiskFlow through periodic and diluted obstacle arrays (arXiv:2009.11372v1)
[9] Sarracino A, Cecconi F, Puglisi A and Vulpiani A 2016 Nonlinear response of inertial tracers in steady laminar flows: differential and absolute negative mobility Phys. Rev. Lett.117 174501 · doi:10.1103/physrevlett.117.174501
[10] Reichhardt C and Reichhardt C J O 2018 Clogging and depinning of ballistic active matter systems in disordered media Phys. Rev. E 97 052613 · doi:10.1103/physreve.97.052613
[11] Reichhardt C and Reichhardt C J O 2014 Active matter transport and jamming on disordered landscapes Phys. Rev. E 90 012701 · doi:10.1103/physreve.90.012701
[12] Alonso-Matilla R, Chakrabarti B and Saintillan D 2019 Transport and dispersion of active particles in periodic porous media Phys. Rev. Fluids4 043101 · doi:10.1103/physrevfluids.4.043101
[13] Pattanayak S, Das R, Kumar M and Mishra S 2019 Enhanced dynamics of active Brownian particles in periodic obstacle arrays and corrugated channels Eur. Phys. J. E 42 62 · doi:10.1140/epje/i2019-11826-7
[14] Kreuter C, Siems U, Nielaba P, Leiderer P and Erbe A 2013 Transport phenomena and dynamics of externally and self-propelled colloids in confined geometry Eur. Phys. J. Spec. Top.222 2923 · doi:10.1140/epjst/e2013-02067-x
[15] Ribeiro H E, Ferreira W P and Potiguar F Q 2020 Trapping and sorting of active matter in a periodic back-ground potential Phys. Rev. E 101 032126 · doi:10.1103/physreve.101.032126
[16] Romanczuk P, Bär M, Ebeling W, Lindner B and Schimansky-Geier L 2012 Active Brownian particles Eur. Phys. J. Spec. Top.202 1 · doi:10.1140/epjst/e2012-01529-y
[17] Bechinger C, Di Leonardo R, Lowen H, Reichhardt C, Volpe G and Volpe G 2016 Active particles in complex and crowded environments Rev. Mod. Phys.88 045006 · doi:10.1103/revmodphys.8.045006
[18] Ramaswamy S 2017 Active matter J. Stat. Mech. 054002 · Zbl 1457.82202 · doi:10.1088/1742-5468/aa6bc5
[19] Fodor É and Cristina Marchetti M 2018 The statistical physics of active matter: from self-catalytic colloids to living cells Physica A 504 106 · Zbl 1514.82129 · doi:10.1016/j.physa.2017.12.137
[20] Gompper G et al 2020 The 2020 motile active matter roadmap J. Phys.: Condens. Matter32 193001 · doi:10.1088/1361-648x/ab6348
[21] Toner J, Tu Y and Ramaswamy S 2005 Hydrodynamics and phases of flocks Ann. Phys.318 170 · Zbl 1126.82347 · doi:10.1016/j.aop.2005.04.011
[22] Kumar N, Soni H, Ramaswamy S and Sood A K 2014 Flocking at a distance in active granular matter Nat. Commun.5 4688 · doi:10.1038/ncomms5688
[23] Schwarz-Linek J, Valeriani C, Cacciuto A, Cates M E, Marenduzzo D, Morozov A N and Poon W C K 2012 Phase separation and rotor self-assembly in active particle suspensions Proc. Natl Acad. Sci. USA109 4052 · doi:10.1073/pnas.1116334109
[24] Redner G S, Hagan M F and Baskaran A 2013 Structure and dynamics of a phase-separating active colloidal fluid Phys. Rev. Lett.110 055701 · doi:10.1103/physrevlett.110.055701
[25] Stenhammar J, Wittkowski R, Marenduzzo D and Cates M E 2015 Activity-induced phase separation and self-assembly in mixtures of active and passive particles Phys. Rev. Lett.114 018301 · doi:10.1103/physrevlett.114.018301
[26] Cates M E and Tailleur J 2015 Motility-induced phase separation Annu. Rev. Condens. Matter Phys.6 219 · doi:10.1146/annurev-conmatphys-031214-014710
[27] Malakar K, Jemseena V, Kundu A, Vijay Kumar K, Sabhapandit S, Majumdar S N, Redner S and Dhar A 2018 Steady state, relaxation and first-passage properties of a run-and-tumble particle in one-dimension J. Stat. Mech. 043215 · Zbl 1459.82182 · doi:10.1088/1742-5468/aab84f
[28] Basu U, Majumdar S N, Rosso A and Schehr G 2018 Active Brownian motion in two dimensions Phys. Rev. E 98 062121 · doi:10.1103/physreve.98.062121
[29] Demaerel T and Maes C 2018 Active processes in one dimension Phys. Rev. E 97 032604 · doi:10.1103/physreve.97.032604
[30] Codling E A, Plank M J and Benhamou S 2008 Random walk models in biology J. R. Soc. Interface.5 813-34 · doi:10.1098/rsif.2008.0014
[31] Berg H C and Coli E 2004 Motion (Heidelberg: Springer)
[32] Berthier L and Kurchan J 2013 Non-equilibrium glass transitions in driven and active matter Nat. Phys.9 310-4 · doi:10.1038/nphys2592
[33] Chepizhko O and Peruani F 2015 Active particles in heterogeneous media display new physics Eur. Phys. J. Spec. Top.224 1287-302 · doi:10.1140/epjst/e2015-02460-5
[34] Morin A, Desreumaux N, Caussin J-B and Bartolo D 2017 Distortion and destruction of colloidal flocks in disordered environments Nat. Phys.13 63-7 · doi:10.1038/nphys3903
[35] Quint D A and Gopinathan A 2015 Topologically induced swarming phase transition on a 2D percolated lattice Phys. Biol.12 046008 · doi:10.1088/1478-3975/12/4/046008
[36] Sándor C, Libál A, Reichhardt C and Olson Reichhardt C J 2017 Dynamic phases of active matter systems with quenched disorder Phys. Rev. E 95 032606 · doi:10.1103/physreve.95.032606
[37] Morin A, Lopes Cardozo D, Chikkadi V and Bartolo D 2017 Diffusion, subdiffusion, and localization of active colloids in random post lattices Phys. Rev. E 96 042611 · doi:10.1103/physreve.96.042611
[38] Zeitz M, Wolff K and Stark H 2017 Active Brownian particles moving in a random Lorentz gas Eur. Phys. J. E 40 23 · doi:10.1140/epje/i2017-11510-0
[39] Bertrand T, Zhao Y, Bènichou O, Tailleur J and Voituriez R 2018 Optimized diffusion of run-and-tumble particles in crowded environments Phys. Rev. Lett.120 198103 · doi:10.1103/physrevlett.120.198103
[40] Chepizhko O and Franosch T 2019 Ideal circle microswimmers in crowded media Soft Matter15 452-61 · doi:10.1039/c8sm02030b
[41] Bhattacharjee T and Datta S S 2019 Confinement and activity regulate bacterial motion in porous media Soft Matter15 9920 · doi:10.1039/c9sm01735f
[42] Jakuszeit T, Croze O A and Bell S 2019 Diffusion ofactive particles in a complex environment: role of surface scattering Phys. Rev. E 99 012610 · doi:10.1103/physreve.99.012610
[43] Volpe G, Buttinoni I, Vogt D, Kümmerer H-J and Bechinger C 2011 Microswimmers in patterned environments Soft Matter7 8810-5 · doi:10.1039/c1sm05960b
[44] Reichhardt C and Reichhardt C J O 2020 Directional locking effects for active matter particles coupled to a periodic substrate Phys. Rev. E 102 042616 · doi:10.1103/physreve.102.042616
[45] Reichhardt C J O and Reichhardt C 2017 Ratchet effects in active matter systems Annu. Rev. Condens. Matter Phys.8 51 · doi:10.1146/annurev-conmatphys-031016-025522
[46] Ge H, Qian M and Qian H 2012 Stochastic theory of nonequilibrium steady states. Part II: applications in chemical biophysics Phys. Rep.510 87-118 · doi:10.1016/j.physrep.2011.09.001
[47] Dhar A, Kundu A, Majumdar S N, Sabhapandit S and Schehr G 2019 Run-and-tumble particle in one-dimensional confining potentials: steady-state, relaxation, and first-passage properties Phys. Rev. E 99 032132 · doi:10.1103/physreve.99.032132
[48] Tailleur J and Cates M E 2008 Statistical mechanics of interacting run-and-tumble bacteria Phys. Rev. Lett.100 218103 · doi:10.1103/physrevlett.100.218103
[49] Sevilla F J, Arzola A V and Cital E P 2019 Stationary superstatistics distributions of trapped run-and-tumble particles Phys. Rev. E 99 012145 · doi:10.1103/physreve.99.012145
[50] Mallmin E, Blythe R A and Evans M R 2019 A comparison of dynamical fluctuations of biased diffusion and run-and-tumble dynamics in one dimension J. Phys. A: Math. Theor.52 425002 · Zbl 1509.82093 · doi:10.1088/1751-8121/ab4349
[51] Palacci J, Cottin-Bizonne C, Ybert C and Bocquet L 2010 Sedimentation and effective temperature of active colloidal suspensions Phys. Rev. Lett.105 088304 · doi:10.1103/physrevlett.105.088304
[52] Enculescu M and Stark H 2011 Active colloidal suspensions exhibit polar order under gravity Phys. Rev. Lett.107 058301 · doi:10.1103/physrevlett.107.058301
[53] Tailleur J and Cates M E 2009 Sedimentation, trapping, and rectification of dilute bacteria Europhys. Lett.86 60002 · doi:10.1209/0295-5075/86/60002
[54] Szamel G 2014 Self-propelled particle in an external potential: existence of an effective temperature Phys. Rev. E 90 012111 · doi:10.1103/physreve.90.012111
[55] Pottier N 1996 Analytic study of the effect of persistence on a one-dimensional biased random walk Physica A 230 563-76 · doi:10.1016/0378-4371(96)00075-1
[56] Patlak C S 1953 Random walk with persistence and external bias Bull. Math. Biophys.15 311-38 · Zbl 1296.82044 · doi:10.1007/bf02476407
[57] Dandekar R, Chakraborti S and Rajesh R 2020 Hard core run and tumble particles on a one dimensional lattice (arXiv:2006.05980v1)
[58] Parrondo J M R 1998 Reversible ratchets as Brownian particles in an adiabatically changing periodic potential Phys. Rev. E 57 7297 · doi:10.1103/physreve.57.7297
[59] Hänggi P and Marchesoni F 2009 Artificial Brownian motors: controlling transport on the nanoscale Rev. Mod. Phys.81 387-442 · doi:10.1103/revmodphys.81.387
[60] Cubero D and Renzoni F 2016 Brownian Ratchets: From Statistical Physics to Bio and Nano-Motors (Cambridge: Cambridge University Press) · doi:10.1017/CBO9781107478206
[61] Ben Dor Y, Kafri Y and Tailleur J 2018 Forces in dry active matter lecture notes from les Houches summer school on active matter and non-equilibrium statistical physics (arXiv:1811.08829v1)
[62] Maes C 2020 Response theory: a trajectory-based approach Front. Phys.8 1-27 · doi:10.3389/fphy.2020.00229
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.