×

Layer potentials and boundary value problems for elliptic systems in Lipschitz domains. (English) Zbl 0733.35034

The author studies boundary value problems in Lipschitz domains for general second order linear elliptic systems of partial differential equations with constant coefficients. Suitable layer potential operators are constructed to show the unique solvability of the Dirichlet problem with boundary data in \(L^ p\)(\(\partial \Omega)\) for p close to 2; the method applies to elliptic systems whose coefficients satisfy the Legendre-Hadamard condition and a symmetry condition. The oblique derivative problem is also considered.
Reviewer: J.Sprekels (Essen)

MSC:

35J55 Systems of elliptic equations, boundary value problems (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Calderon, A.P; Calderon, A.P, Boundary value problems for the Laplace equation in Lipschitz domains, (), 33-48 · Zbl 0608.31001
[2] Calderon, A.P; Zygmund, A, Singular integral operators and differential equation, Amer. J. math., 79, 901-921, (1957) · Zbl 0081.33502
[3] Coifman, R.R; David, G; Meyer, Y, La solution des conjectures de calderon, Adv. in math., 48, 144-148, (1983) · Zbl 0518.42024
[4] Coefman, R.R; McIntosh, A; Meyer, Y, L’intégrale de Cauchy définit un opérateur borné sur L2 pour LES courbes lipschitziennes, Ann. of math., 116, 361-388, (1982) · Zbl 0497.42012
[5] Dahlberg, B.E.J, Estimates of harmonic measure, Arch. rational mech. anal., 65, 278-288, (1977) · Zbl 0406.28009
[6] Dahlberg, B.E.J; Kenig, C.E, Hardy spaces and the Neumann problems for Laplace equation in a Lipschitz domain, Ann. of math., 125, 437-465, (1987) · Zbl 0658.35027
[7] Dahlberg, B.E.J; Kenig, C.E; Verchota, G, Boundary value problems for the system of elastostatics on a Lipschitz domain, Duke math. J., 57, No. 3, 795-818, (1988) · Zbl 0699.35073
[8] {\scB. E. J. Dahlberg and G. Verchota}, Galerkin method for the boundary integral equations of elliptic equations in non-smooth domains, preprint. · Zbl 0714.35022
[9] Fabes, E.B, Layer potential methods for boundary value problems on Lipschitz domains, () · Zbl 0666.31007
[10] Fabes, E.B; Jodeit, M; Rivere, N.M, Potential techniques for boundary value problems on C1 domains, Acta math., 141, 165-186, (1978) · Zbl 0402.31009
[11] Gao, W, Boundary value problems on Lipschitz domains for general elliptic systems, ()
[12] Kenig, C.E, Recent progress on boundary value problems on Lipschitz domains, () · Zbl 0661.35024
[13] Kupradze, V.D, Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity, (1979), North-Holland Amsterdam · Zbl 0421.73009
[14] Morrey, C, Second order elliptic systems of differential equations, () · Zbl 0057.08301
[15] Necas, J, LES méthodes directes en théories d’équations elliptiques, (1967), Academia Pragues
[16] Seeley, R.T, Singular integrals on compact mainfolds, Amer. J. math., 81, 658-690, (1959) · Zbl 0109.33001
[17] Seeley, R.T, Refinement of the functional calculus of calderon and Zygmund, (), 521-531 · Zbl 0141.13302
[18] Verchota, G.C; Verchota, G.C, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains, (), 59, 572-611, (1984) · Zbl 0589.31005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.