×

Classical Yang-Mills observables from amplitudes. (English) Zbl 1457.83005

Summary: The double copy suggests that the basis of the dynamics of general relativity is Yang-Mills theory. Motivated by the importance of the relativistic two-body problem, we study the classical dynamics of colour-charged particle scattering from the perspective of amplitudes, rather than equations of motion. We explain how to compute the change of colour, and the radiation of colour, during a classical collision. We apply our formalism at next-to-leading order for the colour change and at leading order for colour radiation.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
81U20 \(S\)-matrix theory, etc. in quantum theory

Software:

TikZ-Feynman
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S. Babak et al., Science with the space-based interferometer LISA. V: extreme mass-ratio inspirals, Phys. Rev. D95 (2017) 103012 [arXiv:1703.09722] [INSPIRE].
[2] Donoghue, JF, Leading quantum correction to the Newtonian potential, Phys. Rev. Lett., 72, 2996 (1994) · doi:10.1103/PhysRevLett.72.2996
[3] Donoghue, JF, General relativity as an effective field theory: the leading quantum corrections, Phys. Rev. D, 50, 3874 (1994) · doi:10.1103/PhysRevD.50.3874
[4] Donoghue, JF; Torma, T., On the power counting of loop diagrams in general relativity, Phys. Rev. D, 54, 4963 (1996) · doi:10.1103/PhysRevD.54.4963
[5] Holstein, BR; Donoghue, JF, Classical physics and quantum loops, Phys. Rev. Lett., 93, 201602 (2004) · doi:10.1103/PhysRevLett.93.201602
[6] Neill, D.; Rothstein, IZ, Classical space-times from the S matrix, Nucl. Phys. B, 877, 177 (2013) · Zbl 1284.83052 · doi:10.1016/j.nuclphysb.2013.09.007
[7] Bjerrum-Bohr, NEJ; Donoghue, JF; Vanhove, P., On-shell techniques and universal results in quantum gravity, JHEP, 02, 111 (2014) · Zbl 1333.83043 · doi:10.1007/JHEP02(2014)111
[8] Monteiro, R.; O’Connell, D.; White, CD, Black holes and the double copy, JHEP, 12, 056 (2014) · Zbl 1333.83048 · doi:10.1007/JHEP12(2014)056
[9] Luna, A.; Monteiro, R.; Nicholson, I.; O’Connell, D.; White, CD, The double copy: bremsstrahlung and accelerating black holes, JHEP, 06, 023 (2016) · Zbl 1388.83025 · doi:10.1007/JHEP06(2016)023
[10] Damour, T., Gravitational scattering, post-Minkowskian approximation and effective one-body theory, Phys. Rev. D, 94, 104015 (2016) · doi:10.1103/PhysRevD.94.104015
[11] Goldberger, WD; Ridgway, AK, Radiation and the classical double copy for color charges, Phys. Rev. D, 95, 125010 (2017) · doi:10.1103/PhysRevD.95.125010
[12] Cachazo, F.; Guevara, A., Leading singularities and classical gravitational scattering, JHEP, 02, 181 (2020) · Zbl 1435.83076 · doi:10.1007/JHEP02(2020)181
[13] Laddha, A.; Sen, A., Gravity waves from soft theorem in general dimensions, JHEP, 09, 105 (2018) · Zbl 1398.83023 · doi:10.1007/JHEP09(2018)105
[14] Cheung, C.; Rothstein, IZ; Solon, MP, From scattering amplitudes to classical potentials in the post-Minkowskian expansion, Phys. Rev. Lett., 121, 251101 (2018) · doi:10.1103/PhysRevLett.121.251101
[15] Kosower, DA; Maybee, B.; O’Connell, D., Amplitudes, observables, and classical scattering, JHEP, 02, 137 (2019) · Zbl 1411.81217 · doi:10.1007/JHEP02(2019)137
[16] Bern, Z.; Cheung, C.; Roiban, R.; Shen, C-H; Solon, MP; Zeng, M., Scattering amplitudes and the conservative Hamiltonian for binary systems at third post-Minkowskian order, Phys. Rev. Lett., 122, 201603 (2019) · doi:10.1103/PhysRevLett.122.201603
[17] Antonelli, A.; Buonanno, A.; Steinhoff, J.; van de Meent, M.; Vines, J., Energetics of two-body Hamiltonians in post-Minkowskian gravity, Phys. Rev. D, 99, 104004 (2019) · doi:10.1103/PhysRevD.99.104004
[18] Bjerrum-Bohr, NEJ; Donoghue, JF; Holstein, BR; Planté, L.; Vanhove, P., Bending of light in quantum gravity, Phys. Rev. Lett., 114 (2015) · Zbl 1390.83057 · doi:10.1103/PhysRevLett.114.061301
[19] N.E.J. Bjerrum-Bohr, B.R. Holstein, J.F. Donoghue, L. Planté and P. Vanhove, Illuminating light bending, PoS(CORFU2016)077 (2017) [arXiv:1704.01624] [INSPIRE].
[20] Damour, T., High-energy gravitational scattering and the general relativistic two-body problem, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.044038
[21] Luna, A.; Nicholson, I.; O’Connell, D.; White, CD, Inelastic black hole scattering from charged scalar amplitudes, JHEP, 03, 044 (2018) · Zbl 1388.83477 · doi:10.1007/JHEP03(2018)044
[22] Laddha, A.; Sen, A., Logarithmic terms in the soft expansion in four dimensions, JHEP, 10, 056 (2018) · Zbl 1402.83081 · doi:10.1007/JHEP10(2018)056
[23] Laddha, A.; Sen, A., Observational signature of the logarithmic terms in the soft graviton theorem, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.024009
[24] Bjerrum-Bohr, NEJ; Damgaard, PH; Festuccia, G.; Planté, L.; Vanhove, P., General relativity from scattering amplitudes, Phys. Rev. Lett., 121, 171601 (2018) · doi:10.1103/PhysRevLett.121.171601
[25] Sahoo, B.; Sen, A., Classical and quantum results on logarithmic terms in the soft theorem in four dimensions, JHEP, 02, 086 (2019) · Zbl 1411.83029 · doi:10.1007/JHEP02(2019)086
[26] Koemans Collado, A.; Di Vecchia, P.; Russo, R., Revisiting the second post-Minkowskian eikonal and the dynamics of binary black holes, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.066028
[27] Brandhuber, A.; Travaglini, G., On higher-derivative effects on the gravitational potential and particle bending, JHEP, 01, 010 (2020) · Zbl 1434.83033 · doi:10.1007/JHEP01(2020)010
[28] Cristofoli, A.; Bjerrum-Bohr, NEJ; Damgaard, PH; Vanhove, P., Post-Minkowskian Hamiltonians in general relativity, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.084040
[29] Laddha, A.; Sen, A., Classical proof of the classical soft graviton theorem in D > 4, Phys. Rev. D, 101 (2020) · Zbl 1437.83030 · doi:10.1103/PhysRevD.101.084011
[30] Bern, Z.; Cheung, C.; Roiban, R.; Shen, C-H; Solon, MP; Zeng, M., Black hole binary dynamics from the double copy and effective theory, JHEP, 10, 206 (2019) · Zbl 1427.83035 · doi:10.1007/JHEP10(2019)206
[31] Damgaard, PH; Haddad, K.; Helset, A., Heavy black hole effective theory, JHEP, 11, 070 (2019) · Zbl 1429.83034 · doi:10.1007/JHEP11(2019)070
[32] Kälin, G.; Porto, RA, From boundary data to bound states, JHEP, 01, 072 (2020) · Zbl 1434.85004 · doi:10.1007/JHEP01(2020)072
[33] Bjerrum-Bohr, NEJ; Cristofoli, A.; Damgaard, PH, Post-Minkowskian scattering angle in Einstein gravity, JHEP, 08, 038 (2020) · Zbl 1454.83008 · doi:10.1007/JHEP08(2020)038
[34] G. Kälin and R.A. Porto, From boundary data to bound states. Part II. Scattering angle to dynamical invariants (with twist), JHEP02 (2020) 120 [arXiv:1911.09130] [INSPIRE]. · Zbl 1435.85003
[35] Accettulli Huber, M.; Brandhuber, A.; De Angelis, S.; Travaglini, G., Note on the absence of R^2corrections to Newton’s potential, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.046011
[36] Saha, AP; Sahoo, B.; Sen, A., Proof of the classical soft graviton theorem in D = 4, JHEP, 06, 153 (2020) · Zbl 1437.83030 · doi:10.1007/JHEP06(2020)153
[37] Aoude, R.; Haddad, K.; Helset, A., On-shell heavy particle effective theories, JHEP, 05, 051 (2020) · Zbl 1437.83053 · doi:10.1007/JHEP05(2020)051
[38] Bern, Z.; Ita, H.; Parra-Martinez, J.; Ruf, MS, Universality in the classical limit of massless gravitational scattering, Phys. Rev. Lett., 125 (2020) · doi:10.1103/PhysRevLett.125.031601
[39] Cheung, C.; Solon, MP, Classical gravitational scattering at \(\mathcal{O}\left({G}^3\right)\) from Feynman diagrams, JHEP, 06, 144 (2020) · Zbl 1439.83013 · doi:10.1007/JHEP06(2020)144
[40] Cristofoli, A.; Damgaard, PH; Di Vecchia, P.; Heissenberg, C., Second-order post-Minkowskian scattering in arbitrary dimensions, JHEP, 07, 122 (2020) · Zbl 1451.83008 · doi:10.1007/JHEP07(2020)122
[41] Z. Bern, A. Luna, R. Roiban, C.-H. Shen and M. Zeng, Spinning black hole binary dynamics, scattering amplitudes and effective field theory, arXiv:2005.03071 [INSPIRE].
[42] Parra-Martinez, J.; Ruf, MS; Zeng, M., Extremal black hole scattering at \(\mathcal{O}\left({G}^3\right) \): graviton dominance, eikonal exponentiation, and differential equations, JHEP, 11, 023 (2020) · Zbl 1456.83117 · doi:10.1007/JHEP11(2020)023
[43] Haddad, K.; Helset, A., The double copy for heavy particles, Phys. Rev. Lett., 125, 181603 (2020) · doi:10.1103/PhysRevLett.125.181603
[44] Accettulli Huber, M.; Brandhuber, A.; De Angelis, S.; Travaglini, G., Eikonal phase matrix, deflection angle and time delay in effective field theories of gravity, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.046014
[45] Cheung, C.; Solon, MP, Tidal effects in the post-Minkowskian expansion, Phys. Rev. Lett., 125, 191601 (2020) · doi:10.1103/PhysRevLett.125.191601
[46] M. A, D. Ghosh, A. Laddha and P.V. Athira, Soft radiation from scattering amplitudes revisited, arXiv:2007.02077 [INSPIRE].
[47] G. Kälin, Z. Liu and R.A. Porto, Conservative dynamics of binary systems to third post-Minkowskian order from the effective field theory approach, arXiv:2007.04977 [INSPIRE].
[48] K. Haddad and A. Helset, Gravitational tidal effects in quantum field theory, arXiv:2008.04920 [INSPIRE].
[49] G. Kälin, Z. Liu and R.A. Porto, Conservative tidal effects in compact binary systems to next-to-leading post-Minkowskian order, arXiv:2008.06047 [INSPIRE].
[50] B. Sahoo, Classical sub-subleading soft photon and soft graviton theorems in four spacetime dimensions, arXiv:2008.04376 [INSPIRE].
[51] Di Vecchia, P.; Heissenberg, C.; Russo, R.; Veneziano, G., Universality of ultra-relativistic gravitational scattering, Phys. Lett. B, 811, 135924 (2020) · Zbl 1472.81248 · doi:10.1016/j.physletb.2020.135924
[52] Z. Bern, J.J. Carrasco, M. Chiodaroli, H. Johansson and R. Roiban, The duality between color and kinematics and its applications, arXiv:1909.01358 [INSPIRE].
[53] Luna, A., Perturbative spacetimes from Yang-Mills theory, JHEP, 04, 069 (2017) · Zbl 1378.83012 · doi:10.1007/JHEP04(2017)069
[54] Goldberger, WD; Ridgway, AK, Bound states and the classical double copy, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.085019
[55] Luna, A.; Monteiro, R.; O’Connell, D.; White, CD, The classical double copy for Taub-NUT spacetime, Phys. Lett. B, 750, 272 (2015) · Zbl 1364.83005 · doi:10.1016/j.physletb.2015.09.021
[56] Lee, K., Kerr-Schild double field theory and classical double copy, JHEP, 10, 027 (2018) · Zbl 1402.83028 · doi:10.1007/JHEP10(2018)027
[57] Luna, A.; Monteiro, R.; Nicholson, I.; O’Connell, D., Type D spacetimes and the Weyl double copy, Class. Quant. Grav., 36 (2019) · Zbl 1476.83027 · doi:10.1088/1361-6382/ab03e6
[58] Adamo, T.; Casali, E.; Mason, L.; Nekovar, S., Plane wave backgrounds and colour-kinematics duality, JHEP, 02, 198 (2019) · Zbl 1411.81216 · doi:10.1007/JHEP02(2019)198
[59] Carrillo González, M.; Melcher, B.; Ratliff, K.; Watson, S.; White, CD, The classical double copy in three spacetime dimensions, JHEP, 07, 167 (2019) · Zbl 1418.83025 · doi:10.1007/JHEP07(2019)167
[60] Cho, W.; Lee, K., Heterotic Kerr-Schild double field theory and classical double copy, JHEP, 07, 030 (2019) · Zbl 1418.83058 · doi:10.1007/JHEP07(2019)030
[61] Carrillo González, M.; Penco, R.; Trodden, M., Shift symmetries, soft limits, and the double copy beyond leading order, Phys. Rev. D, 102, 105011 (2020) · doi:10.1103/PhysRevD.102.105011
[62] Moynihan, N., Kerr-Newman from minimal coupling, JHEP, 01, 014 (2020) · Zbl 1434.83071 · doi:10.1007/JHEP01(2020)014
[63] Bah, I.; Dempsey, R.; Weck, P., Kerr-Schild double copy and complex worldlines, JHEP, 02, 180 (2020) · Zbl 1435.83070 · doi:10.1007/JHEP02(2020)180
[64] Huang, Y-T; Kol, U.; O’Connell, D., Double copy of electric-magnetic duality, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.046005
[65] Alawadhi, R.; Berman, DS; Spence, B.; Peinador Veiga, D., S-duality and the double copy, JHEP, 03, 059 (2020) · Zbl 1435.81225 · doi:10.1007/JHEP03(2020)059
[66] Borsten, L.; Jubb, I.; Makwana, V.; Nagy, S., Gauge × gauge on spheres, JHEP, 06, 096 (2020) · Zbl 1437.83008 · doi:10.1007/JHEP06(2020)096
[67] Kim, K.; Lee, K.; Monteiro, R.; Nicholson, I.; Peinador Veiga, D., The classical double copy of a point charge, JHEP, 02, 046 (2020) · Zbl 1444.83009 · doi:10.1007/JHEP02(2020)046
[68] A. Banerjee, E.Ó. Colgáin, J.A. Rosabal and H. Yavartanoo, Ehlers as EM duality in the double copy, arXiv:1912.02597 [INSPIRE].
[69] Bahjat-Abbas, N.; Stark-Muchão, R.; White, CD, Monopoles, shockwaves and the classical double copy, JHEP, 04, 102 (2020) · Zbl 1436.83014 · doi:10.1007/JHEP04(2020)102
[70] N. Moynihan and J. Murugan, On-shell electric-magnetic duality and the dual graviton, arXiv:2002.11085 [INSPIRE].
[71] Adamo, T.; Mason, L.; Sharma, A., MHV scattering of gluons and gravitons in chiral strong fields, Phys. Rev. Lett., 125 (2020) · doi:10.1103/PhysRevLett.125.041602
[72] Alfonsi, L.; White, CD; Wikeley, S., Topology and Wilson lines: global aspects of the double copy, JHEP, 07, 091 (2020) · Zbl 1451.83006 · doi:10.1007/JHEP07(2020)091
[73] Luna, A.; Nagy, S.; White, C., The convolutional double copy: a case study with a point, JHEP, 09, 062 (2020) · Zbl 1454.83162 · doi:10.1007/JHEP09(2020)062
[74] Keeler, C.; Manton, T.; Monga, N., From Navier-Stokes to Maxwell via Einstein, JHEP, 08, 147 (2020) · Zbl 1454.83022 · doi:10.1007/JHEP08(2020)147
[75] G. Elor, K. Farnsworth, M.L. Graesser and G. Herczeg, The Newman-Penrose map and the classical double copy, arXiv:2006.08630 [INSPIRE].
[76] A. Cristofoli, Gravitational shock waves and scattering amplitudes, arXiv:2006.08283 [INSPIRE].
[77] Alawadhi, R.; Berman, DS; Spence, B., Weyl doubling, JHEP, 09, 127 (2020) · Zbl 1454.83006 · doi:10.1007/JHEP09(2020)127
[78] E. Casali and A. Puhm, A double copy for celestial amplitudes, arXiv:2007.15027 [INSPIRE].
[79] Adamo, T.; Ilderton, A., Classical and quantum double copy of back-reaction, JHEP, 09, 200 (2020) · Zbl 1454.83028 · doi:10.1007/JHEP09(2020)200
[80] Easson, DA; Keeler, C.; Manton, T., Classical double copy of nonsingular black holes, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.086015
[81] E. Chacón, H. García-Compeán, A. Luna, R. Monteiro and C.D. White, New heavenly double copies, arXiv:2008.09603 [INSPIRE].
[82] Goldberger, WD; Prabhu, SG; Thompson, JO, Classical gluon and graviton radiation from the bi-adjoint scalar double copy, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.065009
[83] Goldberger, WD; Li, J.; Prabhu, SG, Spinning particles, axion radiation, and the classical double copy, Phys. Rev. D, 97, 105018 (2018) · doi:10.1103/PhysRevD.97.105018
[84] Chester, D., Radiative double copy for Einstein-Yang-Mills theory, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.084025
[85] Shen, C-H, Gravitational radiation from color-kinematics duality, JHEP, 11, 162 (2018) · Zbl 1404.83022 · doi:10.1007/JHEP11(2018)162
[86] Plefka, J.; Steinhoff, J.; Wormsbecher, W., Effective action of dilaton gravity as the classical double copy of Yang-Mills theory, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.024021
[87] Plefka, J.; Shi, C.; Steinhoff, J.; Wang, T., Breakdown of the classical double copy for the effective action of dilaton-gravity at NNLO, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.086006
[88] A.P.V. and A. Manu, Classical double copy from color kinematics duality: a proof in the soft limit, Phys. Rev. D101 (2020) 046014 [arXiv:1907.10021] [INSPIRE].
[89] G.L. Almeida, S. Foffa and R. Sturani, Classical gravitational self-energy from double copy, arXiv:2008.06195 [INSPIRE]. · Zbl 1163.83331
[90] Vaidya, V., Gravitational spin Hamiltonians from the S matrix, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.024017
[91] Guevara, A., Holomorphic classical limit for spin effects in gravitational and electromagnetic scattering, JHEP, 04, 033 (2019) · Zbl 1415.81107 · doi:10.1007/JHEP04(2019)033
[92] Guevara, A.; Ochirov, A.; Vines, J., Scattering of spinning black holes from exponentiated soft factors, JHEP, 09, 056 (2019) · Zbl 1423.83030 · doi:10.1007/JHEP09(2019)056
[93] Chung, M-Z; Huang, Y-T; Kim, J-W; Lee, S., The simplest massive S-matrix: from minimal coupling to black holes, JHEP, 04, 156 (2019) · Zbl 1415.83014 · doi:10.1007/JHEP04(2019)156
[94] Y.F. Bautista and A. Guevara, From scattering amplitudes to classical physics: universality, double copy and soft theorems, arXiv:1903.12419 [INSPIRE].
[95] Maybee, B.; O’Connell, D.; Vines, J., Observables and amplitudes for spinning particles and black holes, JHEP, 12, 156 (2019) · Zbl 1431.83101 · doi:10.1007/JHEP12(2019)156
[96] Guevara, A.; Ochirov, A.; Vines, J., Black-hole scattering with general spin directions from minimal-coupling amplitudes, Phys. Rev. D, 100, 104024 (2019) · doi:10.1103/PhysRevD.100.104024
[97] Arkani-Hamed, N.; Huang, Y-T; O’Connell, D., Kerr black holes as elementary particles, JHEP, 01, 046 (2020) · Zbl 1434.83049 · doi:10.1007/JHEP01(2020)046
[98] Y.F. Bautista and A. Guevara, On the double copy for spinning matter, arXiv:1908.11349 [INSPIRE].
[99] de la Cruz, L.; Kniss, A.; Weinzierl, S., Double copies of fermions as matter that interacts only gravitationally, Phys. Rev. Lett., 116, 201601 (2016) · doi:10.1103/PhysRevLett.116.201601
[100] Chung, M-Z; Huang, Y-T; Kim, J-W, Classical potential for general spinning bodies, JHEP, 09, 074 (2020) · Zbl 1454.83010 · doi:10.1007/JHEP09(2020)074
[101] M.-Z. Chung, Y.-T. Huang and J.-W. Kim, Kerr-Newman stress-tensor from minimal coupling to all orders in spin, arXiv:1911.12775 [INSPIRE].
[102] Chung, M-Z; Huang, Y-T; Kim, J-W; Lee, S., Complete Hamiltonian for spinning binary systems at first post-Minkowskian order, JHEP, 05, 105 (2020) · Zbl 1437.83057 · doi:10.1007/JHEP05(2020)105
[103] M. Levi, A.J. Mcleod and M. Von Hippel, NNNLO gravitational quadratic-in-spin interactions at the quartic order in G, arXiv:2003.07890 [INSPIRE].
[104] Aoude, R.; Chung, M-Z; Huang, Y-T; Machado, CS; Tam, M-K, The silence of binary Kerr, Phys. Rev. Lett., 125, 181602 (2020) · doi:10.1103/PhysRevLett.125.181602
[105] Wong, SK, Field and particle equations for the classical Yang-Mills field and particles with isotopic spin, Nuovo Cim. A, 65, 689 (1970) · doi:10.1007/BF02892134
[106] Strominger, A., Asymptotic symmetries of Yang-Mills theory, JHEP, 07, 151 (2014) · Zbl 1333.81273 · doi:10.1007/JHEP07(2014)151
[107] Pate, M.; Raclariu, A-M; Strominger, A., Color memory: a Yang-Mills analog of gravitational wave memory, Phys. Rev. Lett., 119, 261602 (2017) · doi:10.1103/PhysRevLett.119.261602
[108] A. Strominger, Lectures on the infrared structure of gravity and gauge theory, arXiv:1703.05448 [INSPIRE]. · Zbl 1408.83003
[109] Campoleoni, A.; Francia, D.; Heissenberg, C., Asymptotic charges at null infinity in any dimension, Universe, 4, 47 (2018) · doi:10.3390/universe4030047
[110] He, T.; Mitra, P., Asymptotic symmetries in (d + 2)-dimensional gauge theories, JHEP, 10, 277 (2019) · Zbl 1427.81072 · doi:10.1007/JHEP10(2019)277
[111] R. Gonzo, T. Mc Loughlin, D. Medrano and A. Spiering, Asymptotic charges and coherent states in QCD, arXiv:1906.11763 [INSPIRE].
[112] Campoleoni, A.; Francia, D.; Heissenberg, C., Electromagnetic and color memory in even dimensions, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.085015
[113] Heinz, UW, Kinetic theory for non-Abelian plasmas, Phys. Rev. Lett., 51, 351 (1983) · doi:10.1103/PhysRevLett.51.351
[114] Heinz, UW, A relativistic colored spinning particle in an external color field, Phys. Lett. B, 144, 228 (1984) · doi:10.1016/0370-2693(84)91809-4
[115] U.W. Heinz, Quark-gluon transport theory. Part 1. The classical theory, Annals Phys.161 (1985) 48 [INSPIRE].
[116] U.W. Heinz, Quark-gluon transport theory. Part 2. Color response and color correlations in a quark-gluon plasma, Annals Phys.168 (1986) 148 [INSPIRE].
[117] Elze, H-T; Heinz, UW, Quark-gluon transport theory, Phys. Rept., 183, 81 (1989) · doi:10.1016/0370-1573(89)90059-8
[118] Litim, DF; Manuel, C., Semiclassical transport theory for non-Abelian plasmas, Phys. Rept., 364, 451 (2002) · Zbl 0994.81075 · doi:10.1016/S0370-1573(02)00015-7
[119] McLerran, LD; Venugopalan, R., Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D, 49, 2233 (1994) · doi:10.1103/PhysRevD.49.2233
[120] McLerran, LD; Venugopalan, R., Gluon distribution functions for very large nuclei at small transverse momentum, Phys. Rev. D, 49, 3352 (1994) · doi:10.1103/PhysRevD.49.3352
[121] E. Iancu and R. Venugopalan, The color glass condensate and high-energy scattering in QCD, in Quark-gluon plasma 4, R.C. Hwa and X.-N. Wang eds., World Scientific, Singapore (2003), pg. 249 [hep-ph/0303204] [INSPIRE]. · Zbl 1096.81535
[122] Kajantie, K.; McLerran, LD; Paatelainen, R., Gluon radiation from a classical point particle, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.054011
[123] Kajantie, K.; McLerran, LD; Paatelainen, R., Gluon radiation from a classical point particle II: dense gluon fields, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.054012
[124] Yaffe, LG, Large N limits as classical mechanics, Rev. Mod. Phys., 54, 407 (1982) · doi:10.1103/RevModPhys.54.407
[125] G. Kaiser, Phase space approach to relativistic quantum mechanics. 1. Coherent state representation for massive scalar particles, J. Math. Phys.18 (1977) 952 [INSPIRE].
[126] S. Twareque Ali and J. Antoine, Coherent states of the 1 + 1 dimensional Poincaré group: square integrability and a relativistic Weyl transform, Ann. Inst. H. Poincaré Phys. Theor.51 (1989) 23. · Zbl 0702.22024
[127] Kowalski, K.; Rembieliński, J.; Gazeau, J-P, On the coherent states for a relativistic scalar particle, Annals Phys., 399, 204 (2018) · Zbl 1404.81141 · doi:10.1016/j.aop.2018.10.014
[128] Perelomov, AM, Coherent states for arbitrary Lie group, Commun. Math. Phys., 26, 222 (1972) · Zbl 0243.22016 · doi:10.1007/BF01645091
[129] Perelomov, A., Generalized coherent states and their applications (1986), Berlin, Heidelberg, Germany: Springer, Berlin, Heidelberg, Germany · Zbl 0605.22013 · doi:10.1007/978-3-642-61629-7
[130] Combescure, M.; Robert, D., Coherent states and applications in mathematical physics (2012), Dordrecht, The Netherlands: Springer, Dordrecht, The Netherlands · Zbl 1243.81004 · doi:10.1007/978-94-007-0196-0
[131] Sakurai, JJ; Napolitano, J., Modern quantum mechanics (2017), Cambridge, U.K: Cambridge University Press, Cambridge, U.K · Zbl 1392.81003 · doi:10.1017/9781108499996
[132] M. Mathur and D. Sen, Coherent states for SU(3), J. Math. Phys.42 (2001) 4181 [quant-ph/0012099] [INSPIRE]. · Zbl 1011.81023
[133] M. Mathur and H.S. Mani, SU(N) coherent states, J. Math. Phys.43 (2002) 5351 [quant-ph/0206005] [INSPIRE]. · Zbl 1060.81536
[134] Mathur, M.; Raychowdhury, I.; Anishetty, R., SU(N ) irreducible Schwinger bosons, J. Math. Phys., 51 (2010) · Zbl 1309.22018 · doi:10.1063/1.3464267
[135] Mathur, M.; Raychowdhury, I., SU(N ) coherent states and irreducible Schwinger bosons, J. Phys. A, 44 (2011) · Zbl 1206.81058 · doi:10.1088/1751-8113/44/3/035203
[136] Ochirov, A.; Page, B., Multi-quark colour decompositions from unitarity, JHEP, 10, 058 (2019) · doi:10.1007/JHEP10(2019)058
[137] Lüscher, M., Asymptotic behavior of classical Yang-Mills fields in Minkowski space, Nucl. Phys. B, 140, 429 (1978) · doi:10.1016/0550-3213(78)90005-6
[138] Adamo, T.; Casali, E., Perturbative gauge theory at null infinity, Phys. Rev. D, 91, 125022 (2015) · doi:10.1103/PhysRevD.91.125022
[139] Alexanian, G.; Balachandran, AP; Immirzi, G.; Ydri, B., Fuzzy CP^2, J. Geom. Phys., 42, 28 (2002) · Zbl 1046.54002 · doi:10.1016/S0393-0440(01)00070-5
[140] Grosse, H.; Steinacker, H., Finite gauge theory on fuzzy CP^2, Nucl. Phys. B, 707, 145 (2005) · Zbl 1160.81410 · doi:10.1016/j.nuclphysb.2004.11.058
[141] Ellis, J., TikZ-Feynman: Feynman diagrams with TikZ, Comput. Phys. Commun., 210, 103 (2017) · Zbl 1376.68154 · doi:10.1016/j.cpc.2016.08.019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.