×

Emergence of homogamy in a two-loci stochastic population model. (English) Zbl 1465.92085

Summary: This article deals with the emergence of a specific mating preference pattern called homogamy in a population. Individuals are characterized by their genotype at two haploid loci, and the population dynamics is modelled by a nonlinear birth-and-death process. The first locus codes for a phenotype, while the second locus codes for homogamy defined with respect to the first locus: two individuals are more (resp. less) likely to reproduce with each other if they carry the same (resp. a different) trait at the first locus. Initial resident individuals do not feature homogamy, and we are interested in the probability and time of invasion of a mutant presenting this characteristic under a large population assumption. To this aim, we study the trajectory of the birth-and-death process during three phases: growth of the mutant, coexistence of the two types, and extinction of the resident. We couple the birth-and-death process with simpler processes, like multidimensional branching processes or dynamical systems, and study the latter ones in order to control the trajectory and duration of each phase.

MSC:

92D25 Population dynamics (general)
60J85 Applications of branching processes
PDFBibTeX XMLCite
Full Text: Link

References:

[1] Alili, S. and Rugh, H. H. On the regularity of the extinction probability of a branching process in varying and random environments.Nonlinearity,21(2), 353-359 (2008) · Zbl 1133.60366
[2] Athreya, K. B. and Ney, P. E.Branching processes. Springer-Verlag, New York-Heidelberg (1972) · Zbl 0259.60002
[3] Billiard, S. and Smadi, C. The interplay of two mutations in a population of varying size: a stochastic eco-evolutionary model for clonal interference.Stochastic Process. Appl., 127(3), 701-748 (2017) · Zbl 1378.92055
[4] Bolker, B. and Pacala, S. W. Using moment equations to understand stochastically driven spatial pattern formation in ecological systems.Theoret. Population Biology,52(3), 179-197 (1997) · Zbl 0890.92020 · doi:10.1006/tpbi.1997.1331
[5] Champagnat, N. A microscopic interpretation for adaptive dynamics trait substitution sequence models.Stochastic Process. Appl.,116(8), 1127-1160 (2006) · Zbl 1100.60055
[6] Champagnat, N. and Méléard, S.Polymorphic evolution sequence and evolutionary branching.Probab. Theory Related Fields,151(1-2), 45-94 (2011) · Zbl 1225.92040
[7] Chicone, C.Ordinary differential equations with applications, volume 34 ofTexts in Applied Mathematics. Springer, New York, second edition (2006). ISBN 978-0387-30769-5; 0387-30769-9 · Zbl 1120.34001
[8] Collet, P., Méléard, S., and Metz, J. A. J. A rigorous model study of the adaptive dynamics of Mendelian diploids.J. Math. Biol.,67(3), 569-607 (2013) · Zbl 1300.92075
[9] Coron, C. Slow-fast stochastic diffusion dynamics and quasi-stationarity for diploid populations with varying size.J. Math. Biol.,72(1), 171-202 (2016) · Zbl 1337.60211 · doi:10.1007/s00285-
[10] Coron, C., Costa, M., Leman, H., and Smadi, C. A stochastic model for speciation by mating preferences.J. Math. Biol.,76(6), 1421-1463 (2018) · Zbl 1390.60282
[11] Dieckmann, U. and Law, R. The dynamical theory of coevolution: a derivation from stochastic ecological processes.J. Math. Biol.,34(5-6), 579-612 (1996) · Zbl 0845.92013
[12] Dupuis, P. and Ellis, R. S.A weak convergence approach to the theory of large deviations. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons, Inc., New York (1997). ISBN 0-471-07672-4 · Zbl 0904.60001
[13] Ethier, S. N. and Kurtz, T. G.Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York (1986). ISBN 0-471-08186-8 · Zbl 0592.60049
[14] Fournier, N. and Méléard, S. A microscopic probabilistic description of a locally regulated population and macroscopic approximations.Ann. Appl. Probab.,14(4), 1880-1919 (2004) · Zbl 1060.92055
[15] Freidlin, M. I. and Wentzell, A. D.Random perturbations of dynamical systems, volume 260 ofGrundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York (1984). ISBN 0-387-90858-7 · Zbl 0522.60055
[16] Georgii, H.-O. and Baake, E. Supercritical multitype branching processes: the ancestral types of typical individuals.Adv. in Appl. Probab.,35(4), 1090-1110 (2003) · Zbl 1044.60080
[17] Gregorius, H.-R. A two-locus model of speciation.J. Theoret. Biol.,154(3), 391-398 (1992) · doi:10.1016/s0022-5193(05)80178-x
[18] Heinzmann, D.Extinction times in multitype Markov branching processes.J. Appl. Probab.,46(1), 296-307 (2009) · Zbl 1159.60344
[19] Herrero, M. Male and female synchrony and the regulation of mating in flowering plants. Phil. Trans. of the Royal Society B: Biological Sciences,358, 1019-1024 (2003)
[20] Jiang, Y., Bolnick, D., and Kirkpatrick, M. Assortative mating in animals.The Americ. Naturalist,181(6), E125-E138 (2013)
[21] Leman, H.A stochastic model for reproductive isolation under asymmetrical mating preferences.Bull. Math. Biol.,80(9), 2502-2525 (2018) · Zbl 1400.92581
[22] McLain, D. and Boromisa, R. Male choice, fighting ability, assortative mating and the intensity of sexual selection in the milkweed longhorn beetle, Tetraopes tetraophthalmus (Coleoptera, Cerambycidae).Behav. Ecology and Sociobiology,20(4), 239-246 (1987) · doi:10.1007/BF00292176
[23] Neukirch, R. and Bovier, A. Survival of a recessive allele in a Mendelian diploid model. J. Math. Biol.,75(1), 145-198 (2017) · Zbl 1370.92093
[24] Savolainen, V., Anstett, M. C., Lexer, C., Hutton, I., Clarkson, J. J., Norup, M. V., Powell, M. P., Springate, D., Salamin, N., and Baker, W. J. Sympatric speciation in palms on an oceanic island.Nature,441, 210-213 (2006) · doi:10.1038/nature04566
[25] Smadi, C. An eco-evolutionary approach of adaptation and recombination in a large population of varying size.Stochastic Process. Appl.,125(5), 2054-2095 (2015) · Zbl 1322.60180
[26] Smadi, C., Leman, H., and Llaurens, V. Looking for the right mate in diploid species: how does genetic dominance affect the spatial differentiation of a sexual trait?J. Theoret. Biol.,447, 154-170 (2018). 1. Introduction and motivation2. Model and main results3. Proof of Theorem 2.23.1. Probability and time of the mutant invasion3.2. Mean-field phase3.3. Extinction3.4. Proof of Theorem 2.2Appendix A. Technical resultsA.1. Equilibria of dynamical system (2.10)A.2. Proof of Proposition 2.3A.3. Probabilistic technical resultsAppendix B. Table for birth ratesReferences · Zbl 1397.92470
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.