×

Function perturbation impact on stability in distribution of probabilistic Boolean networks. (English) Zbl 1510.93237

Summary: In practical gene regulatory networks, function perturbation often occurs due to gene mutation. This paper studies the function perturbation impact on the stability and set stability in distribution of probabilistic Boolean networks (PBNs) by using the semi-tensor product of matrices. Firstly, the stability and set stability in distribution of PBNs is recalled and the function perturbation problem is formulated. Secondly, when a given PBN is stable at an equilibrium (or a set) in distribution, based on the transition probability matrix and reachable set with positive probability, some necessary and sufficient conditions are presented to guarantee that the PBN is still stable at an equilibrium (or a set) in distribution after function perturbation. Finally, illustrative examples are worked out to support the obtained new results.

MSC:

93D09 Robust stability
90B15 Stochastic network models in operations research
92C42 Systems biology, networks
94C11 Switching theory, applications of Boolean algebras to circuits and networks
60C99 Combinatorial probability
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Akman, O.; Comar, T.; Harris, A. L.; Hrozencik, D.; Li, Y., Dynamics of gene regulatory networks with stochastic propensities, Int. J. Biomath., 11, 6, Article 1850032 pp. (2018) · Zbl 1385.92019
[2] Akutsu, T.; Hayashida, M.; Ching, W.; Ng, M., Control of Boolean networks: Hardness results and algorithms for tree structured networks, J. Theoret. Biol., 244, 4, 670-679 (2007) · Zbl 1450.92040
[3] Chen, H.; Liang, J.; Lu, J.; Qiu, J., Synchronization for the realization-dependent probabilistic Boolean networks, IEEE Trans. Neural Netw. Learn. Syst., 29, 4, 819-831 (2018)
[4] Chen, H.; Sun, J., Stability and stabilisation of context-sensitive probabilistic Boolean networks, IET Control Theory Appl., 8, 17, 2115-2121 (2014)
[5] Cheng, D.; Qi, H.; Li, Z., Analysis and Control of Boolean Networks: A Semi-Tensor Product Approach (2011), Springer: Springer London · Zbl 1209.93001
[6] Cheng, D.; Qi, H.; Li, Z.; Liu, J., Stability and stabilization of Boolean networks, Internat. J. Robust Nonlinear Control, 21, 2, 134-156 (2011) · Zbl 1213.93121
[7] Ching, W.; Zhang, S.; Micheal, N.; Akutsu, T., An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks, Bioinformatics, 23, 12, 1511-1518 (2007)
[8] Ding, X.; Li, H.; Li, X.; Sun, W., Stability analysis of Boolean networks with stochastic function perturbations, IEEE Access, 7, 1323-1329 (2019)
[9] Eissing, T.; Chaves, M.; Allgoewer, F., Live and let die-a systems biology view on cell death, Comput. Chem. Eng., 33, 3, 583-589 (2009)
[10] Fornasini, E.; Valcher, M. E., On the periodic trajectories of Boolean control networks, Automatica, 49, 5, 1506-1509 (2013) · Zbl 1319.93010
[11] Guo, Y.; Zhou, R.; Wu, Y.; Gui, W.; Yang, C., Stability and set stability in distribution of probabilistic Boolean networks, IEEE Trans. Automat. Control, 64, 2, 736-742 (2019) · Zbl 1482.60037
[12] Han, M.; Liu, Y.; Tu, Y., Controllability of boolean control networks with time delays both in states and inputs, Neurocomputing, 129, 467-475 (2014)
[13] Huang, T.; Li, C.; Duan, S.; Starzyk, J. A., Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects, IEEE Trans. Neural Netw. Learn. Syst., 23, 6, 866-875 (2012)
[14] Ideker, T.; Galitski, T.; Hood, L., A new approach to decoding life: systems biology, Annu. Rev. Genom. Hum. Genet., 2, 1, 343-372 (2001)
[15] M. Imani, U.M. Braga-Neto, Optimal gene regulatory network inference using the Boolean kalman filter and multiple model adaptive estimation, in: Proceedings of the 49th Annual Asilomar Conference on Signals, Systems, and Computers, 2015, pp. 423-427.
[16] M. Imani, U.M. Braga-Neto, Optimal state estimation for boolean dynamical systems using a boolean Kalman smoother, in: Proceedings of the 3rd IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2015, pp. 972-976.
[17] Imani, M.; Dougherty, E. R.; Braga-Neto, U. M., Boolean Kalman filter and smoother under model uncertainty, Automatica, 111, Article 108609 pp. (2020) · Zbl 1430.93212
[18] Ironi, L.; Tran, D. X., Nonlinear and temporal multiscale dynamics of gene regulatory networks: A qualitative simulator, Math. Comput. Simulation, 125, 15-37 (2016) · Zbl 1519.92073
[19] Kauffman, S., Metabolic stability and epigenesis in randomly constructed genetic nets, J. Theoret. Biol., 22, 3, 437-467 (1969)
[20] Kobayashi, K.; Hiraishi, K., Symbolic approach to verification and control of deterministic/probabilistic Boolean networks, IET Syst. Biol., 6, 6, 215-222 (2012)
[21] Laschov, D.; Margaliot, M., Minimum-time control of Boolean networks, SIAM J. Control Optim., 51, 4, 2869-2892 (2013) · Zbl 1276.49013
[22] Leslaw, S.; Zhu, Q., Exponential stability with respect to part of the variables for a class of nonlinear stochastic systems with Markovian switchings, Math. Comput. Simulation, 155, 2-14 (2019) · Zbl 07316538
[23] Li, F.; Tang, Y., Set stabilization for switched Boolean control networks, Automatica, 78, 223-230 (2017) · Zbl 1357.93079
[24] Li, H.; Wang, Y.; Guo, P., State feedback based output tracking control of probabilistic Boolean networks, Inform. Sci., 349, 1-11 (2016) · Zbl 1398.93124
[25] Li, R.; Yang, M.; Chu, T., State feedback stabilization for probabilistic Boolean networks, Automatica, 50, 4, 1272-1278 (2014) · Zbl 1298.93275
[26] Liu, Y.; Cao, J.; Li, B.; Lu, J., Normalization and solvability of dynamic-algebraic Boolean networks, IEEE Trans. Neural Netw. Learn. Syst., 29, 7, 3301-3306 (2017)
[27] Liu, Y.; Chen, H.; Lu, J.; Wu, B., Controllability of probabilistic Boolean control networks based on transition probability matrices, Automatica, 52, 340-345 (2015) · Zbl 1309.93026
[28] Liu, Q.; Guo, X.; Zhou, T., Optimal control for probabilistic Boolean networks, IET Syst. Biol., 4, 2, 99-107 (2010)
[29] Liu, Y.; Li, B.; Chen, H.; Cao, J., Function perturbations on singular Boolean networks, Automatica, 84, 36-42 (2017) · Zbl 1376.93049
[30] Liu, Z.; Wang, Y.; Li, H., Controllability of context-sensitive probabilistic mix-valued logical control networks with constraints, Asian J. Control, 17, 1, 246-254 (2015) · Zbl 1332.93057
[31] Lu, J.; Li, H.; Liu, Y.; Li, F., Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems, IET Control Theory Appl., 11, 13, 2040-2047 (2017)
[32] Lu, J.; Zhong, J.; Li, L.; Ho, D. W.C.; Cao, J., Synchronization analysis of master-slave probabilistic Boolean networks, Sci. Rep., 5, 13437-15454 (2015)
[33] Meng, M.; Liu, L.; Feng, G., Stability and \(l_1\) gain analysis of Boolean networks with Markovian jump parameters, IEEE Trans. Automat. Control, 62, 8, 4222-4228 (2017) · Zbl 1373.93368
[34] Pal, R.; Datta, A.; Dougherty, E. R., Robust intervention in probabilistic Boolean networks, IEEE Trans. Signal Process., 56, 3, 1280-1294 (2008) · Zbl 1390.93472
[35] Qian, X.; Dougherty, E. R., Effect of function perturbation on the steady-state distribution of genetic regulatory networks: optimal structural intervention, IEEE Trans. Signal Process., 56, 10, 4966-4976 (2008) · Zbl 1390.94374
[36] Shmulevich, I.; Dougherty, E. R., Probabilistic Boolean Networks: The Modeling and Control of Gene Regulatory Networks (2010), Society for Industrial and Applied Mathematics · Zbl 1320.92020
[37] Shmulevich, I.; Dougherty, E. R.; Kim, S.; Zhang, W., Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks, Bioinformatics, 18, 2, 261-274 (2002)
[38] Shmulevich, I.; Dougherty, E. R.; Zhang, W., Gene perturbation and intervention in probabilistic Boolean networks, Bioinformatics, 18, 10, 1319-1331 (2002)
[39] Wu, Y.; Kumar, M.; Shen, T., A stochastic logical system approach to model and optimal control of cyclic variation of residual gas fraction in combustion engines, Appl. Therm. Eng., 93, 8, 251-259 (2016)
[40] Xiao, Y.; Dougherty, E. R., The impact of function perturbations in Boolean networks, Bioinformatics, 23, 10, 1265-1273 (2007)
[41] Xu, W.; Ching, W. K.; Zhang, S.; Li, W.; Chen, X., A matrix perturbation method for computing the steady-state probability distributions of probabilistic Boolean networks with gene perturbations, J. Comput. Appl. Math., 235, 8, 2242-2251 (2011) · Zbl 1207.92015
[42] Xu, X.; Li, H.; Li, Y.; Alsaadi, F. E., Output tracking control of Boolean control networks with impulsive effects, Math. Methods Appl. Sci., 41, 4, 1554-1564 (2018) · Zbl 1383.93026
[43] Yu, Y.; Feng, J.; Wang, B.; Wang, P., Sampled-data controllability and stabilizability of Boolean control networks: Nonuniform sampling, J. Franklin Inst. B, 355, 12, 5324-5335 (2018) · Zbl 1395.93361
[44] Zhao, Y.; Cheng, D., On controllability and stabilizability of probabilistic Boolean control networks, Sci. China Inf. Sci., 57, 1, 1-14 (2014) · Zbl 1331.93027
[45] Zhao, Y.; Krishnan, J., Probabilistic Boolean network modelling and analysis framework for mRNA translation, IEEE/ACM Trans. Comput. Biol. Bioinform., 13, 4, 754-766 (2016)
[46] Zhong, J.; Lu, J.; Huang, T.; Ho, W., Controllability and synchronization analysis of identical-hierarchy mixed-valued logical control networks, IEEE Trans. Cybern., 47, 11, 3482-3493 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.