×

Mathematical modelling of Zika virus as a mosquito-borne and sexually transmitted disease with diffusion effects. (English) Zbl 07316758

Summary: Zika virus disease is an infection transmitted primarily by Aedes mosquitoes, and can be a serious epidemic if not contained and controlled in its early stages. The purpose of this study is to investigate the transmission dynamics of Zika virus epidemic. A mathematical model of Zika virus with the inclusion of diffusion in the system is formulated, using a system of ordinary differential equations. Mathematical models assume transmission of the virus by mosquitoes, with and without transmission through sexual contact by humans. The basic properties of the model in the absence and presence of diffusion are determined including, points of the disease-free equilibrium (DFE) and the endemic equilibrium (EE). Stability of the disease-free equilibrium using the reproduction number, \(R_0\) is established. The stability of the endemic equilibrium is established using the Routh-Hurwitz stability conditions. Bifurcation values for transmission rates and human recovery rate are also calculated. Numerical simulations based on different population distributions help to understand how the diffusion of human and mosquitoes affects the transmission of the disease.

MSC:

65-XX Numerical analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abid Ali, L., Mathematical Modeling and Optimal Control of a Vector Borne Disease (2012), National University Of Sciences And Technology: National University Of Sciences And Technology Islamabad, (Ph.D. dissertation)
[2] Alexandra, M.; Oster, D., Interim guidelines forrevention of sexual transmission of zika virus-united states, 2016, MMWR Morb. Mortal. Wkly Rep., 65 (2016)
[3] Anderson, R. M.; May, R. M., Infectious Diseases of Humans, Vol. 1 (1991), Oxford Universityress: Oxford Universityress Oxford
[4] Basarab, M.; Bowman, C.; Aarons, E. J.; Cropley, I., Zika virus, Bmj, 352, i1049 (2016)
[5] Blayneh, K.; Cao, Y.; Kwon, H.-D., Optimal control of vector-borne diseases: treatment andrevention, Discrete Contin. Dyn. Syst. B, 11, 3, 587-611 (2009) · Zbl 1162.92034
[6] Bonyah, E.; Khan, M. A.; Okosun, K.; Islam, S., A theoretical model for zika virus transmission,, PLoS One, 12, 10, Article e0185540 pp. (2017)
[7] Bonyah, E.; Okosun, K. O., Mathematical modeling of zika virus, Asian Pac. J. Trop. Dis., 6, 9, 673-679 (2016)
[8] Carlson, C. J.; Dougherty, E. R.; Getz, W., An ecological assessment of the andemic threat of zika virus, PLoS Negl. Trop. Dis., 10, 8, Article e0004968 pp. (2016)
[9] Chakraborty, A.; Singh, M.; Lucy, D.; Ridland, P., Predator – prey model with rey-taxis and diffusion, Math. Comput. Modelling, 46, 3, 482-498 (2007) · Zbl 1132.35395
[10] Chitnis, N.; Hyman, J. M.; Manore, C. A., Modelling vertical transmission in vector-borne diseases with applications to rift valley fever, J. Biol. Dyn., 7, 1, 11-40 (2013) · Zbl 1447.92407
[11] Dengue and severe dengue, fact sheet (2017). [Online]. Available: http://www.who.int/mediacentre/factsheets/fs117/en/; Dengue and severe dengue, fact sheet (2017). [Online]. Available: http://www.who.int/mediacentre/factsheets/fs117/en/
[12] Ding, C.; Tao, N.; Zhu, Y., A mathematical model of zika virus and its optimal control, (Control Conference (CCC), 2016 35th Chinese (2016), IEEE), 2642-2645
[13] Duffy, M. R.; Chen, T.-H.; Hancock, W. T.; Powers, A. M.; Kool, J. L.; Lanciotti, R. S.; Pretrick, M.; Marfel, M.; Holzbauer, S.; Dubray, C., Zika virus outbreak on yap island, federated states of micronesia, New Engl. J. Med., 2009, 360, 2536-2543 (2009)
[14] Easton, A.; Singh, M.; Cui, G., Solutions of two species reaction – diffusion systems, Can. Appl. Math. Quart., 5, 359-373 (1997) · Zbl 0914.92015
[15] H. Elsaka, E. Ahmed, A fractional order network model for zika, BioRxiv (2016) 039917.; H. Elsaka, E. Ahmed, A fractional order network model for zika, BioRxiv (2016) 039917.
[16] Gao, D.; Lou, Y.; He, D.; C.orco, T.; Kuang, Y.; Chowell, G.; Ruan, S., Revention and control of zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling analysis, Sci. Rep., 6 (2016)
[17] Gatherer, D.; Kohl, A., Zika virus: areviously slowandemic spreads rapidly through the americas, J. Gen. Virol., 97, 2, 269-273 (2016)
[18] Haddow, A. D.; Schuh, A. J.; Yasuda, C. Y.; Kasper, M. R.; Heang, V.; Huy, R.; Guzman, H.; Tesh, R. B.; Weaver, S. C., Genetic characterization of zika virus strains: geographic expansion of the asian lineage, PLoS Negl. Trop. Dis., 6, 2, Article e1477 pp. (2012)
[19] R. Isea, K.E. Lonngren, Areliminary mathematical model for the dynamic transmission of dengue, chikungunya and zika, arXivreprint arXiv:1606.08233; R. Isea, K.E. Lonngren, Areliminary mathematical model for the dynamic transmission of dengue, chikungunya and zika, arXivreprint arXiv:1606.08233
[20] Kucharski, A. J.; Funk, S.; Eggo, R. M.; Mallet, H.-P.; Edmunds, W. J.; Nilles, E. J., Transmission dynamics of zika virus in islandopulations: a modelling analysis of the 2013-14 frencholynesia outbreak, PLoS Negl. Trop. Dis., 10, 5, Article e0004726 pp. (2016)
[21] Lambert, J. D., Numerical Methods for Ordinary Differential Systems: The Initial Valueroblem (1991), John Wiley & Sons, Inc · Zbl 0745.65049
[22] Lashari, A. A.; Aly, S.; Hattaf, K.; Zaman, G.; Jung, I. H.; Li, X.-Z., Presentation of malaria epidemics using multiple optimal controls, J. Appl. Math., 2012 (2012) · Zbl 1244.93111
[23] Malone, R. W.; Homan, J.; Callahan, M. V.; Glasspool-Malone, J.; Damodaran, L.; Schneider, A. D.B.; Zimler, R.; Talton, J.; Cobb, R. R.; Ruzic, I., Zika virus: medical countermeasure development challenges, PLoS Negl. Trop. Dis., 10, 3, Article e0004530 pp. (2016)
[24] C. Manore, M. Hyman, Mathematical models for fighting zika virus, Siam News, hiladelphia Google Scholar, 2016.; C. Manore, M. Hyman, Mathematical models for fighting zika virus, Siam News, hiladelphia Google Scholar, 2016.
[25] Margiotta, V., Analysis of the spread of malaria disease, Science (2010)
[26] Meinsma, G., Elementaryroof of the routh-hurwitz test, Systems Control Lett., 25, 4, 237-242 (1995) · Zbl 0877.93082
[27] Musso, D.; Gubler, D. J., Zika virus following theath of dengue and chikungunya?, Lancet, 386, 9990, 243-244 (2015)
[28] Ndeffo-Mbah, M. L.; Parpia, A. S.; Galvani, A., Mitigatingrenatal zika virus infection in the americasmitigatingrenatal zika virus infection in the americas, Ann. Intern. Med., 165, 8, 551-559 (2016)
[29] Perkins, T. A.; Siraj, A. S.; Ruktanonchai, C. W.; Kraemer, M. U.; Tatem, A. J., Model-basedrojections of zika virus infections in childbearing women in the americas, Nat. Microbiol., 1, 16126 (2016)
[30] Sapoukhina, N.; Tyutyunov, Y.; Arditi, R., The role ofrey taxis in biological control: a spatial theoretical model, Amer. Nat., 162, 1, 61-76 (2003)
[31] Singh, M.; Easton, A.; Kozlova, I., A numerical study of the spruce budworm reaction – diffusion equation with hostile boundaries, Nat. Resour. Model., 13, 4, 535-550 (2000) · Zbl 1008.92037
[32] Van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 1, 29-48 (2002) · Zbl 1015.92036
[33] Yanenko, N. N., The Method of Fractional Steps (1971), Springer · Zbl 0209.47103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.