×

Mathematical modeling and numerical simulations of Zika in Colombia considering mutation. (English) Zbl 07316703

Summary: In this paper, we analyze the Zika virus transmission dynamics on human and mosquito populations. Mosquitoes play a role of infectious agents and vector of the Zika virus (ZIKV). In this sense, we set out a mathematical model assuming constant size population for the evolution of the infected humans with ZIKV and analyze its qualitative dynamics. The epidemic threshold parameter \(\mathcal{R}_0\) for the extinction of disease is computed. Numerical simulations of the model varying the numerical values of the parameters corroborate the theoretical results regarding \(\mathcal{R}_0\). The values of the parameters related to the mathematical model of the Zika epidemic are estimated using real data from Zika prevalence in Colombia for year 2016. We find a \(\mathcal{R}_0 = 0 . 88\) for this particular case which allows us to understand and explain some aspects of the Zika epidemic in Colombia. These results are valuable since they can be compared with Zika epidemics in other countries and from other years, and enrich the knowledge about the dynamics of the spread of Zika virus.

MSC:

92Dxx Genetics and population dynamics
92-XX Biology and other natural sciences

Software:

bootlib
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agusto, F. B.; Bewick, S.; Fagan, W. F., Mathematical model for Zika virus dynamics with sexual transmission route, Ecol. Complex., 29, 61-81 (2017)
[2] Andraud, Mathieu; Hens, Niel; Marais, Christiaan; Beutels, Philippe, Dynamic epidemiological models for Dengue transmission: a systematic review of structural approaches, PLoS One, 7, 11, Article e49085 pp. (2012)
[3] Aranda, Diego F.; Trejos, Deccy Y.; Valverde, Jose C.; Villanueva, Rafael J., A mathematical model for Babesiosis disease in bovine and tick populations, Math. Methods Appl. Sci., 35, 3, 249-256 (2012) · Zbl 1234.92052
[4] Aranda, Diego F.; Villanueva, Rafael J.; Arenas, Abraham J.; González-Parra, Gilberto C., Mathematical modeling of toxoplasmosis disease in varying size populations, Comput. Math. Appl., 56, 3, 690-696 (2008) · Zbl 1155.92336
[5] Arenas, Abraham J.; González-Parra, Gilberto; Micó, Rafael-J. Villanueva, Modeling toxoplasmosis spread in cat populations under vaccination, Theor. Popul. Biol., 77, 4, 227-237 (2010) · Zbl 1403.92115
[6] Bonyah, Ebenezer; Khan, Muhammad Altaf; Okosun, K. O.; Islam, Saeed, A theoretical model for Zika virus transmission, PLoS One, 12, 10, Article e0185540 pp. (2017)
[7] Bonyah, Ebenezer; Okosun, Kazeem Oare, Mathematical modeling of Zika virus, Asian Pac. J. Trop. Dis., 6, 9, 673-679 (2016)
[8] Cardona-Ospina, Jaime A.; Henao-SanMartin, Valentina; Paniz-Mondolfi, Alberto E.; Rodríguez-Morales, Alfonso J., Mortality and fatality due to Chikungunya virus infection in Colombia, J. Clin. Virol., 70, 14-15 (2015)
[9] Castillo-Chavez, Carlos; Brauer, Fred, Mathematical Models in Population Biology and Epidemiology (2012), Springer: Springer New York, NY, USA · Zbl 1302.92001
[10] Coleman, Thomas F.; Li, Yuying, An interior trust region approach for nonlinear minimization subject to bounds, SIAM J. Optim., 6, 2, 418-445 (1996) · Zbl 0855.65063
[11] Cruz-Pacheco, Gustavo; Esteva, Lourdes; Vargas, Cristobal, Control measures for Chagas disease, Math. Biosci., 237, 1, 49-60 (2012) · Zbl 1241.92049
[12] Davison, Anthony Christopher; Hinkley, David Victor, Bootstrap Methods and Their Application (1997), Cambridge University Press · Zbl 0886.62001
[13] Diekmann, O.; Heesterbeek, J. A.P.; Roberts, M. G., The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7, 47, 873-885 (2009)
[14] Dinh, Linh; Chowell, Gerardo; Mizumoto, Kenji; Nishiura, Hiroshi, Estimating the subcritical transmissibility of the Zika outbreak in the State of Florida, USA, 2016, Theor. Biol. Med. Model., 13, 1, 20 (2016)
[15] Van den Driessche, P.; Watmough, James, Further notes on the basic reproduction number, (Mathematical Epidemiology (2008), Springer), 159-178 · Zbl 1206.92038
[16] Efron, B., Bootstrap methods: Another look at the Jackknife, Ann. Statist., 7, 1, 1-26 (1979) · Zbl 0406.62024
[17] de Estadística, Departamento Administrativo Nacional, Censo Colombia (2005), https://www.dane.gov.co/files/censos/libroCenso2005nacional.pdf. (Accessed 30 April 2016)
[18] Gao, Daozhou; Lou, Yijun; He, Daihai; Porco, Travis C.; Kuang, Yang; Chowell, Gerardo; Ruan, Shigui, Prevention and control of Zika fever as a mosquito-borne and sexually transmitted disease (2016), arXiv preprint arXiv:1604.04008
[19] Golberg, David E., Genetic Algorithms in Search, Optimization, and Machine Learning (1989), Addion Wesley · Zbl 0721.68056
[20] González-Parra, Gilberto; Arenas, Abraham J.; Aranda, Diego F.; Segovia, Lupe, Modeling the epidemic waves of AH1N1/09 influenza around the world, Spat. Spatio-Temporal Epidemiol., 2, 4, 219-226 (2011)
[21] González-Parra, Gilberto; Arenas, Abraham J.; Chen-Charpentier, Benito M., A fractional order epidemic model for the simulation of outbreaks of influenza A (H1N1), Math. Methods Appl. Sci., 37, 15, 2218-2226 (2014) · Zbl 1300.92099
[22] González-Parra, Gilberto; Chen-Charpentier, Benito M.; Bermúdez, Moises, Modeling chagas disease at population level to explain Venezuela’s real data, Osong Publ. Health Res. Perspect., 6, 5, 288-301 (2015)
[23] González-Parra, Gilberto; Rodriguez, Thalia; Dobrovolny, Hana M., A comparison of methods for extracting influenza viral titer characteristics, J. Virol. Methods, 231, 14-24 (2016)
[24] Goo, Leslie; Dowd, Kimberly A.; Smith, Alexander R. Y.; Pelc, Rebecca S.; DeMaso, Christina R.; Pierson, Theodore C., Zika virus is not uniquely stable at physiological temperatures compared to other flaviviruses, MBio, 7, 5, e01396-16 (2016)
[25] Götz, Thomas; Altmeier, Nicole; Bock, Wolfgang; Rockenfeller, Robert; Wijaya, Karunia Putra, Modeling dengue data from Semarang, Indonesia, Ecol. Complex., 30, 57-62 (2017)
[26] Hethcote, Herbert W., Mathematics of infectious diseases, SIAM Rev., 42, 599-653 (2005) · Zbl 0993.92033
[27] Isea, Raúl; Lonngren, Karl E., A preliminary mathematical model for the dynamic transmission of Dengue, Chikungunya and Zika (2016), arXiv preprint arXiv:1606.08233
[28] Khan, M. A.; Ali, K.; Bonyah, E.; Okosun, K. O.; Islam, S.; Khan, A., Mathematical modeling and stability analysis of Pine Wilt disease with optimal control, Sci. Rep., 7, 1, 3115 (2017)
[29] Khan, Muhammad Altaf; Khan, Rizwan; Khan, Yasir; Islam, Saeed, A mathematical analysis of pine wilt disease with variable population size and optimal control strategies, Chaos Solitons Fractals, 108, 205-217 (2018) · Zbl 1390.92140
[30] Kincaid, David Ronald; Cheney, Elliott Ward, Numerical Analysis: Mathematics of Scientific Computing (2002), American Mathematical Soc. · Zbl 0745.65001
[31] Kucharski, Adam J.; Funk, Sebastian; Eggo, Rosalind M.; Mallet, Henri-Pierre; Edmunds, W. John; Nilles, Eric J., Transmission dynamics of Zika virus in island populations: a modelling analysis of the 2013-14 French Polynesia outbreak, PLoS Negl. Trop. Dis., 10, 5, Article e0004726 pp. (2016)
[32] Majumder, Maimuna S.; Santillana, Mauricio; Mekaru, Sumiko R.; McGinnis, Denise P.; Khan, Kamran; Brownstein, John S., Utilizing nontraditional data sources for near real-time estimation of transmission dynamics during the 2015-2016 Colombian Zika virus disease outbreak, JMIR Publ. Health Surveill., 2, 1 (2016)
[33] Manore, Carrie; Hyman, Mac, Mathematical models for fighting Zika virus, (Siam News, Philadelphia Google Scholar (2016))
[34] Manore, Carrie A.; Ostfeld, Richard S.; Agusto, Folashade B.; Gaff, Holly; LaDeau, Shannon L., Defining the risk of Zika and chikungunya virus transmission in human population centers of the eastern United States, PLoS Negl. Trop. Dis., 11, 1, Article e0005255 pp. (2017)
[35] Mpeshe, Saul C.; Nyerere, Nkuba; Sanga, Stephano, Modeling approach to investigate the dynamics of Zika virus fever: A neglected disease in Africa, Int. J. Adv. Appl. Math. Mech., 4, 3, 14-21 (2017) · Zbl 1382.92244
[36] Murray, James D., (Mathematical Biology I: An Introduction. Mathematical Biology I: An Introduction, Interdisciplinary Applied Mathematics, vol. 17 (2002), Springer: Springer New York, NY, USA) · Zbl 1006.92001
[37] Nishiura, Hiroshi; Kinoshita, Ryo; Mizumoto, Kenji; Yasuda, Yohei; Nah, Kyeongah, Transmission potential of Zika virus infection in the South Pacific, Int. J. Infect. Dis., 45, 95-97 (2016)
[38] Ospina, Juan; Hincapie-Palacio, Doracelly; Ochoa, Jesús; Molina, Adriana; Rúa, Guillermo; Pájaro, Dubán; Arrubla, Marcela; Almanza, Rita; Paredes, Marlio; Mubayi, Anuj, Stratifying the potential local transmission of Zika in municipalities of Antioquia, Colombia, Trop. Med. Int. Health (2017)
[39] Press, William H.; Teukolsky, Saul A.; Vetterling, William T.; Flannery, Brian P., Numerical Recipes: The Art of Scientific Computing (1992), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0845.65001
[40] Raue, Andreas; Kreutz, Clemens; Maiwald, Thomas; Bachmann, Julie; Schilling, Marcel; Klingmüller, Ursula; Timmer, Jens, Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood, Bioinformatics, 25, 15, 1923-1929 (2009)
[41] Salud, Redacción, Virus de Chikungunya se extiende a zonas con clima templado (2017), http://www.elespectador.com/noticias/salud/virus-de-chikungunya-se-extiende-zonas-clima-templado-articulo-534575. (Accessed 4 April 2017)
[42] Sun, Gui-Quan; Xie, Jun-Hui; Huang, Sheng-He; Jin, Zhen; Li, Ming-Tao; Liu, Liqun, Transmission dynamics of cholera: Mathematical modeling and control strategies, Commun. Nonlinear Sci. Numer. Simul., 45, 235-244 (2017) · Zbl 1485.92154
[43] Tsetsarkin, Konstantin A.; Kenney, Heather; Chen, Rubing; Liu, Guangping; Manukyan, Hasmik; Whitehead, Stephen S.; Laassri, Majid; Chumakov, Konstantin; Pletnev, Alexander G., A full-length infectious cDNA clone of Zika virus from the 2015 epidemic in Brazil as a genetic platform for studies of virus-host interactions and vaccine development, MBio, 7, 4, e01114-16 (2016)
[44] van den Driessche, Pauline, Reproduction numbers of infectious disease models, Infect. Dis. Model., 2, 3, 288-303 (2017)
[45] Van den Driessche, Pauline; Watmough, James, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 1, 29-48 (2002) · Zbl 1015.92036
[46] Villamil-Gómez, Wilmer E.; Mendoza-Guete, Anibal; Villalobos, Elvira; González-Arismendy, Edgardo; Uribe-García, Ana María; Castellanos, Jaime Eduardo; Rodríguez-Morales, Alfonso J., Diagnosis, management and follow-up of pregnant women with Zika virus infection: A preliminary report of the ZIKERNCOL cohort study on Sincelejo, Colombia, Travel Med. Infect. Dis., 14, 2, 155-158 (2016)
[47] Yakob, Laith; Clements, Archie C. A., A mathematical model of chikungunya dynamics and control: the major epidemic on Réunion Island, PLoS One, 8, 3, Article e57448 pp. (2013)
[48] Zhu, Min; Xu, Yong, A time-periodic dengue fever model in a heterogeneous environment, Math. Comput. Simulation (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.