×

Inference for conditional value-at-risk of a predictive regression. (English) Zbl 1469.62250

The authors deal with the inference problem of conditional value-at-risk under a linear predictive regression model. Denote by \(Y\) the return of an asset and let \(X = (X_1, \dots, X_k)^{\top}\) be a collection of predictors (market variables or risk factors). Suppose that we have \(n\) observations (data points) \(\{Y_t,X_t\}, t=1,\dots,n\), with \(X_t = (X_{t,1},\dots, X_{t,k})^{\top}\) related to the linear predictive regression \[ Y_t = \beta_0 + \sum_{i=1}^{k}\beta_ iX_{t,i} + \varepsilon_t, \quad t = 1,\dots, n, \] where \(\{\varepsilon_t \}\) is a sequence of i.i.d. random variables with zero mean and finite variance.
The conditional VaR of \(Y_t\) at level \(\alpha\in(0,1)\), given \(X_t = x :=(x_1,\dots, x_k)^{\top}\) is determined as the conditional quantile \[ \mathrm{VaR}_x(\alpha) := \inf\{q : P (Y_t \leq q|X_t = x) \geq\alpha\}= F^{-1}_{ \varepsilon } + Z^{\top}\beta, \] where \(\beta = (\beta_0, \beta_1, \dots , \beta_k) ^{\top}\), \( z = (1,x^{\top})^{\top}\), \( F_{ \varepsilon }\) denotes the distribution function of \( \varepsilon_t\) and \(F^{-1}_{ \varepsilon }\) denotes the generalized inverse of \(F_{ \varepsilon }\). A simple estimator for the above conditional VaR is \[ \widehat{\mathrm{VaR}}_ x(\alpha) =\widehat{\varepsilon}_{n,[n\alpha] }+ Z^{\top}\hat{\beta}, \] where \(\hat{\beta}\) is a consistent estimator of \({\beta}\), \(\widehat{\varepsilon}_t=Y_t- \hat{\beta}^{\top}Z_t,\) \( Z_t= (1,X_t^{\top})^{\top}\), and where \(\widehat{\varepsilon}_{n,1}\leq\cdots\leq \widehat{\varepsilon}_{n,n }\) denote the order statistics of \(\widehat{\varepsilon}_{1},\dots, \widehat{\varepsilon}_{n }\).
S. Y. Chun et al. [Oper. Res. 60, No. 4, 739–756 (2012; Zbl 1260.91121)] considered the least squares estimator \[ \hat{\beta} = \left\{ \frac{1}{n}\sum_{t=1}^{n}Z_tZ_t^{\top} \right\}^{-1} \left\{\frac{1}{n}\sum_{t=1}^{n}Y_tZ_t\right\}, \] and derived the asymptotic distribution of the corresponding \(\widehat{\mathrm{VaR}}_ x(\alpha)\) under the condition that \(X_t\) are independent and identically distributed random vectors.
In this paper the authors derive the asymptotic distribution of the conditional \(\mathrm{VaR}_x(\alpha)\) based on the indicated least squares estimator. Their estimator of the conditional quantile is different from the one obtained via quantile regression proposed by R. Koenker and G. Bassett jun. [Econometrica 46, 33–50 (1978; Zbl 0373.62038)]. It is shown that the obtained estimator is asymptotically more efficient than the quantile regression estimator in regular cases. The authors generalize the described model assumptions by allowing the predictors in the model to be a stationary sequence, instead of being just an independent sequence and, furthermore, incorporating scenarios where some predictors have infinite variance. They propose an empirical likelihood method for deriving the corresponding confidence intervals via least squares estimation. The performance of the proposed method is demonstrated by a simulation study as well as a real data application.

MSC:

62G20 Asymptotic properties of nonparametric inference
62G08 Nonparametric regression and quantile regression
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62P20 Applications of statistics to economics
91G70 Statistical methods; risk measures

Software:

QRM; CAViaR
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] Adrian, T., Boyarchenko, N. and Giannone, D. (2019). Vulnerable growth. Am. Econ. Rev. 109 1263-1289.
[2] Adrian, T. and Brunnermeier, M. (2016). CoVaR. Am. Econ. Rev. 106 1705-1741.
[3] Bartolucci, F. (2007). A penalized version of the empirical likelihood ratio for the population mean. Statist. Probab. Lett. 77 104-110. · Zbl 1106.62050 · doi:10.1016/j.spl.2006.05.016
[4] Baysal, R. E. and Staum, J. (2008). Empirical likelihood for value-at-risk and expected shortfall. J. Risk 11 3-32.
[5] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31 307-327. · Zbl 0616.62119 · doi:10.1016/0304-4076(86)90063-1
[6] Chen, S. X. and Hall, P. (1993). Smoothed empirical likelihood confidence intervals for quantiles. Ann. Statist. 21 1166-1181. · Zbl 0786.62053 · doi:10.1214/aos/1176349256
[7] Chen, J., Variyath, A. M. and Abraham, B. (2008). Adjusted empirical likelihood and its properties. J. Comput. Graph. Statist. 17 426-443.
[8] Chernozhukov, V. (2005). Extremal quantile regression. Ann. Statist. 33 806-839. · Zbl 1068.62063 · doi:10.1214/009053604000001165
[9] Christoffersen, P. and Gonçalves, S. (2005). Estimation risk in financial risk management. J. Risk 7 1-28.
[10] Chun, S. Y., Shapiro, A. and Uryasev, S. (2012). Conditional value-at-risk and average value-at-risk: Estimation and asymptotics. Oper. Res. 60 739-756. · Zbl 1260.91121 · doi:10.1287/opre.1120.1072
[11] Cochrane, J. H. (2009). Asset Pricing, rev. ed. Princeton Univ. Press, Princeton, NJ. · Zbl 1169.91003
[12] Davis, R. A. and Hsing, T. (1995). Point process and partial sum convergence for weakly dependent random variables with infinite variance. Ann. Probab. 23 879-917. · Zbl 0837.60017 · doi:10.1214/aop/1176988294
[13] Davis, R. A. and Wu, W. (1997). \(M\)-estimation for linear regression with infinite variance. Probab. Math. Statist. 17 1-20. · Zbl 0876.62055
[14] Duffie, D. and Pan, J. (1997). An overview of value at risk. J. Deriv. 4 7-49.
[15] Duffie, D. and Pan, J. (2001). Analytical value-at-risk with jumps and credit risk. Finance Stoch. 5 155-180. · Zbl 0993.91016 · doi:10.1007/PL00013531
[16] Emerson, S. C. and Owen, A. B. (2009). Calibration of the empirical likelihood method for a vector mean. Electron. J. Stat. 3 1161-1192. · Zbl 1326.62099 · doi:10.1214/09-EJS518
[17] Engle, R. (2001). GARCH 101: The use of ARCH/GARCH models in applied econometrics. J. Econ. Perspect. 15 157-168.
[18] Engle, R. (2004). Risk and volatility: Econometric models and financial practice. Am. Econ. Rev. 94 405-420.
[19] Engle, R. F. and Manganelli, S. (2004). CAViaR: Conditional autoregressive value at risk by regression quantiles. J. Bus. Econom. Statist. 22 367-381.
[20] Fama, E. F. and Roll, R. (1971). Parameter estimates for symmetric stable distributions. J. Amer. Statist. Assoc. 66 331-338. · Zbl 0217.51404 · doi:10.1080/01621459.1971.10482264
[21] Fan, Y., Härdle, W. K., Wang, W. and Zhu, L. (2018). Single-index-based CoVaR with very high-dimensional covariates. J. Bus. Econom. Statist. 36 212-226.
[22] Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II. Second Edition. Wiley, New York. · Zbl 0219.60003
[23] Gao, F. and Song, F. (2008). Estimation risk in Garch VaR and ES estimates. Econometric Theory 24 1404-1424. · Zbl 1283.91086 · doi:10.1017/S0266466608080559
[24] Granger, C. W. J. and Orr, D. (1972). Infinite variance and research strategy in time series analysis. J. Amer. Statist. Assoc. 67 275-285. · Zbl 0237.62056
[25] Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application: Probability and Mathematical Statistics. Academic Press, New York. · Zbl 0462.60045
[26] Hall, P. and Yao, Q. (2003). Inference in ARCH and GARCH models with heavy-tailed errors. Econometrica 71 285-317. · Zbl 1136.62368 · doi:10.1111/1468-0262.00396
[27] He, Y., Hou, Y., Peng, L. and Shen, H. (2020). Supplement to “Inference for conditional value-at-risk of a predictive regression.” https://doi.org/10.1214/19-AOS1937SUPP.
[28] Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. Ann. Statist. 3 1163-1174. · Zbl 0323.62033 · doi:10.1214/aos/1176343247
[29] Horowitz, J. L. (1998). Bootstrap methods for median regression models. Econometrica 66 1327-1351. · Zbl 1056.62517 · doi:10.2307/2999619
[30] Jorion, P. (1996). \( \text{Risk}^2 \): Measuring the risk in value at risk. Financ. Anal. J. 52 47-56.
[31] Jorion, P. (2007). Value at Risk: The New Benchmark for Managing Financial Risk, 3rd ed. McGraw-Hill, Boston, MA.
[32] Kitamura, Y. (2007). Empirical likelihood methods in econometrics: Theory and practice. In Advances in Economics and Econometrics: Theory and Applications, Ninth World Congress. Cambridge Univ. Press, Cambridge. · Zbl 1131.62106
[33] Koenker, R. (2005). Quantile Regression. Econometric Society Monographs 38. Cambridge Univ. Press, Cambridge.
[34] Koenker, R. and Bassett, G. Jr. (1978). Regression quantiles. Econometrica 46 33-50. · Zbl 0373.62038 · doi:10.2307/1913643
[35] Kou, S. and Peng, X. (2016). On the measurement of economic tail risk. Oper. Res. 64 1056-1072. · Zbl 1378.91101 · doi:10.1287/opre.2016.1539
[36] Kou, S., Peng, X. and Heyde, C. C. (2013). External risk measures and Basel accords. Math. Oper. Res. 38 393-417. · Zbl 1297.91089 · doi:10.1287/moor.1120.0577
[37] Koul, H. L. (2002). Weighted Empirical Processes in Dynamic Nonlinear Models. Lecture Notes in Statistics 166. Springer, New York. Second edition of Weighted empiricals and linear models [Inst. Math. Statist., Hayward, CA, 1992; MR1218395 (95c:62061)]. · Zbl 1007.62047
[38] Lahiri, S. N. and Mukhopadhyay, S. (2012). A penalized empirical likelihood method in high dimensions. Ann. Statist. 40 2511-2540. · Zbl 1373.62132 · doi:10.1214/12-AOS1040
[39] Lai, T. L. and Xing, H. (2013). Stochastic change-point ARX-GARCH models and their applications to econometric time series. Statist. Sinica 23 1573-1594. · Zbl 1417.62250
[40] Lee, S. and Noh, J. (2013). Quantile regression estimator for GARCH models. Scand. J. Stat. 40 2-20. · Zbl 1259.62080 · doi:10.1111/j.1467-9469.2011.00759.x
[41] Ling, S. (2007). Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models. J. Econometrics 140 849-873. · Zbl 1247.91142 · doi:10.1016/j.jeconom.2006.07.016
[42] Mammen, E. (1996). Empirical process of residuals for high-dimensional linear models. Ann. Statist. 24 307-335. · Zbl 0853.62042 · doi:10.1214/aos/1033066211
[43] Mandelbrot, B. (1963). The variation of certain speculative prices. J. Bus. 36 394-419.
[44] McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Techniques and Tools, Revised ed. Princeton Series in Finance. Princeton Univ. Press, Princeton, NJ. · Zbl 1337.91003
[45] Müller, U. U., Schick, A. and Wefelmeyer, W. (2012). Estimating the error distribution function in semiparametric additive regression models. J. Statist. Plann. Inference 142 552-566. · Zbl 1231.62069 · doi:10.1016/j.jspi.2011.08.013
[46] Owen, A. (1990). Empirical likelihood ratio confidence regions. Ann. Statist. 18 90-120. · Zbl 0712.62040 · doi:10.1214/aos/1176347494
[47] Owen, A. (2001). Empirical Likelihood. Chapman & Hall/CRC, New York. · Zbl 0989.62019
[48] Qin, J. and Lawless, J. (1994). Empirical likelihood and general estimating equations. Ann. Statist. 22 300-325. · Zbl 0799.62049 · doi:10.1214/aos/1176325370
[49] Rachev, S. T., Menn, C. and Fabozzi, F. J. (2005). Fat-Tailed and Skewed Asset Return Distributions: Implications for Risk Management, Portfolio Selection, and Option Pricing. Wiley, Hoboken, NJ.
[50] Rachev, S. T. and Mittnik, S. (2000). Stable Paretian Models in Finance. Wiley, New York. · Zbl 0972.91060
[51] Resnick, S. I. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer Series in Operations Research and Financial Engineering. Springer, New York. · Zbl 1152.62029
[52] Sherman, R. P. (1993). The limiting distribution of the maximum rank correlation estimator. Econometrica 61 123-137. · Zbl 0773.62011 · doi:10.2307/2951780
[53] Shorack, G. R. and Wellner, J. A. (2009). Empirical Processes with Applications to Statistics. Classics in Applied Mathematics 59. SIAM, Philadelphia, PA. Reprint of the 1986 original [MR0838963]. · Zbl 1171.62057
[54] Spokoiny, V. (2009). Multiscale local change point detection with applications to value-at-risk. Ann. Statist. 37 1405-1436. · Zbl 1160.62084 · doi:10.1214/08-AOS612
[55] Tsao, M. and Wu, F. (2013). Empirical likelihood on the full parameter space. Ann. Statist. 41 2176-2196. · Zbl 1360.62140 · doi:10.1214/13-AOS1143
[56] van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3. Cambridge Univ. Press, Cambridge. · Zbl 0910.62001
[57] Whang, Y.-J. (2006). Smoothed empirical likelihood methods for quantile regression models. Econometric Theory 22 173-205. · Zbl 1138.62017 · doi:10.1017/S0266466606060087
[58] Xu, K. · Zbl 1441.62906 · doi:10.1017/S0266466614000802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.