×

Current control and active damping for single phase LCL-filtered grid connected inverter. (English) Zbl 1458.93169

Summary: LCL filter has been widely used in the grid connected inverter, since it is effective in attenuation of the switching frequency harmonics in the inverter. However, the resonance in this filter causes stability problems and must be damped effectively to achieve stability. There are some methods to damp the resonance; one method is passive damping of resonance by adding a series resistor with the filter capacitor, but passive element reduces the inverter efficiency. Other method uses active damping (AD) by adding a proportional control loop of filter capacitor current, but this method needs additional sensor to measure filter capacitor current; moreover, when the control loops are digitally implemented, the computation delay in AD control loop will lead to some difficulties in choosing control parameters and maintaining system stability. This paper presents current control scheme for the grid connected inverter with the LCL filter. The proposed scheme ensures the control of injected current into grid with AD of the resonance in the LCL filter while keeping system stability and eliminating the effect of computation delay of the AD loop. An estimation of filter capacitor current with one step ahead is performed using the discrete time observer based on measuring the injected current. This reduces the cost and increases the robustness of the system. Proportional Resonant (PR) controller is used to control the injected current. Design of control system and choosing its parameters are studied and justified in details to ensure suitable performance with adequate stability margins. Simulation and experimental results show the effectiveness and the robustness of the proposed control scheme.

MSC:

93C80 Frequency-response methods in control theory
93C62 Digital control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Zhang, X.; Spencer, J. W.; Guerrero, J. M., Small-signal modeling of digitally controlled grid-connected inverters with \(LCL\) filters, IEEE Transactions on Industrial Electronics, 60, 9, 3752-3765 (2013) · doi:10.1109/tie.2012.2204713
[2] Agorreta, J. L.; Borrega, M.; López, J.; Marroyo, L., Modeling and control of N-paralleled grid-connected inverters with LCL filter coupled due to grid impedance in PV plants, IEEE Trans. Power Electron, 26, 3, 770-785 (2011) · doi:10.1109/tpel.2010.2095429
[3] Zmood, D. N.; Holmes, D. G., Stationary frame current regulation of PWM inverters with zero steady-state error, IEEE Transactions on Power Electronics, 18, 3, 814-822 (2003) · doi:10.1109/tpel.2003.810852
[4] Armstrong, M.; Elgendy, M. A.; Mulolani, F., Three-phase grid connected PV inverters using the proportional resonance controller, Proceedings of the 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), IEEE
[5] Blaabjerg, F.; Teodorescu, R.; Liserre, M.; Timbus, A. V., Overview of control and grid synchronization for distributed power generation systems, IEEE Transactions on Industrial Electronics, 53, 5, 1398-1409 (2006) · doi:10.1109/tie.2006.881997
[6] Zhang, N.; Tang, H.; Yao, C., A systematic method for designing a PR controller and active damping of the LCL filter for single-phase grid-connected PV inverters, Energies, 7, 6, 3934-3954 (2014) · doi:10.3390/en7063934
[7] Teodorescu, R.; Blaabjerg, F.; Borup, U.; Liserre, M., A new control structure for grid-connected LCL PV inverters with zero steady-state error and selective harmonic compensation, Proceedings of the Applied Power Electronics Conference and Exposition, 2004. APEC’04, IEEE · doi:10.1109/APEC.2004.129586
[8] Zammit, D.; Staines, C. S.; Apap, M., Pr current control with harmonic compensation in grid connected pv inverters, World Academy of Science, Engineering and Technology International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 8, 11, 1773-1779 (2014)
[9] Tang, Y.; Loh, P. C.; Wang, P.; Choo, F. H.; Gao, F., Exploring inherent damping characteristic of LCL-filters for three-phase grid-connected voltage source inverters, IEEE Transactions on Power Electronics, 27, 3, 1433-1443 (2012) · doi:10.1109/tpel.2011.2162342
[10] Dannehl, J.; Fuchs, F. W.; Hansen, S.; Thogersen, P. B., Investigation of active damping approaches for PI-based current control of grid-connected pulse width modulation converters with LCL filters, IEEE Transactions on Industry Applications, 46, 4, 1509-1517 (2010) · doi:10.1109/tia.2010.2049974
[11] Sandeep, N.; Kulkarni, P. S.; Udaykumar, R. Y., A single-stage active damped LCL-filter-based grid-connected photovoltaic inverter with maximum power point tracking, Proceedings of the Power Systems Conference (NPSC), 2014 Eighteenth National, IEEE · doi:10.1109/NPSC.2014.7103889
[12] Sahoo, A. K.; Shahani, A.; Basu, K.; Mohan, N., LCL filter design for grid-connected inverters by analytical estimation of PWM ripple voltage, Proceedings of the Applied Power Electronics Conference and Exposition (APEC), 2014 Twenty-Ninth Annual IEEE, IEEE · doi:10.1109/APEC.2014.6803471
[13] Zhang, C.; Dragicevic, T.; Vasquez, J. C.; Guerrero, J. M., Resonance damping techniques for grid-connected voltage source converters with LCL filters—a review, Proceedimgs of the Energy Conference (ENERGYCON), 2014 IEEE International, IEEE · doi:10.1109/ENERGYCON.2014.685042
[14] Zong, X.; Lehn, P. W., Reactive power control of single phase grid tied voltage sourced inverters for residential PV application, Proceedings of the IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, IEEE · doi:10.1109/iecon.2012.6388667
[15] Tang, Y.; Loh, P. C.; Wang, P.; Choo, F. H.; Gao, F.; Blaabjerg, F., Generalized design of high performance shunt active power filter with output LCL filter, IEEE Transactions on Industrial Electronics, 59, 3, 1443-1452 (2012) · doi:10.1109/tie.2011.2167117
[16] Pan, D.; Ruan, X.; Bao, C.; Li, W.; Wang, X., Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter, IEEE Transactions on Power Electronics, 29, 7, 3414-3427 (2014) · doi:10.1109/tpel.2013.2279206
[17] Parker, S. G.; McGrath, B. P.; Holmes, D. G., Regions of active damping control for LCL filters, Proceedings of the Energy Conversion Congress and Exposition (ECCE), IEEE · doi:10.1109/ecce.2012.6342412
[18] Wang, X.; Blaabjerg, F.; Loh, P. C., Grid-current-feedback active damping for LCL resonance in grid-connected voltage-source converters, IEEE Transactions on Power Electronics, 31, 1, 213-223 (2016) · doi:10.1109/tpel.2015.2411851
[19] Malinowski, M.; Bernet, S., A simple voltage sensorless active damping scheme for three-phase PWM converters with an LCL filter, IEEE Transactions on Industrial Electronics, 55, 4, 1876-1880 (2008) · doi:10.1109/tie.2008.917066
[20] Xu, J.; Xie, S.; Tang, T., Active damping-based control for grid-connected LCL -filtered inverter with injected grid current feedback only, IEEE Transactions on Industrial Electronics, 61, 9, 4746-4758 (2014) · doi:10.1109/tie.2013.2290771
[21] Busada, C. A.; Jorge, S. G.; Solsona, J. A., Full-state feedback equivalent controller for active damping in LCL -filtered grid-connected inverters using a reduced number of sensors, IEEE Transactions on Industrial Electronics, 62, 10, 5993-6002 (2015) · doi:10.1109/tie.2015.2424391
[22] Abdeldjabar, B.; Huaiyuan, L.; Jian, W.; Dianguo, X., Robust observer based active damping control for LCL filtered grid connected converters using LMI criterion, Proceedings of the 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe) · doi:10.1109/EPE.2016.7695376
[23] Wang, B.; Xu, Y.; Shen, Z.; Zou, J.; Li, C.; Liu, H., Current control of grid-connected inverter with LCL filter based on extended-state observer estimations using single sensor and achieving improved robust observation dynamics, IEEE Transactions on Industrial Electronics, 64, 7, 5428-5439 (2017) · doi:10.1109/tie.2017.2674600
[24] Kukkola, J.; Hinkkanen, M., Observer-based state-space current control for a three-phase grid-connected converter equipped with an LCL filter, IEEE Transactions on Industry Applications, 50, 4, 2700-2709 (2014) · doi:10.1109/tia.2013.229546
[25] Dannehl, J.; Liserre, M.; Fuchs, F. W., Filter-based active damping of voltage source converters with LCL filter, IEEE Transactions on Industrial Electronics, 58, 8, 3623-3633 (2011) · doi:10.1109/tie.2010.2081952
[26] He, J.; Li, Y. W., Generalized closed-loop control schemes with embedded virtual impedances for voltage source converters with LC or LCL filters, IEEE Transactions on Power Electronics, 27, 4, 1850-1861 (2012) · doi:10.1109/tpel.2011.2168427
[27] Wang, J.; Yan, J. D., Using virtual impedance to analyze the stability of LCL-filtered grid-connected inverters, Proceedings of the Industrial Technology (ICIT), 2015 IEEE International Conference on, IEEE · doi:10.1109/icit.2015.7125264
[28] Holmes, D. G.; Lipo, T. A.; McGrath, B. P.; Kong, W. Y., Optimized design of stationary frame three phase AC current regulators, IEEE Transactions on Power Electronics, 24, 11, 2417-2426 (2009) · doi:10.1109/tpel.2009.2029548
[29] Bao, C.; Ruan, X.; Wang, X.; Li, W.; Pan, D.; Weng, K., Step-by-step controller design for LCL-type grid-connected inverter with capacitor-current-feedback active-damping, IEEE Transactions on Power Electronics, 29, 3, 1239-1253 (2014) · doi:10.1109/tpel.2013.2262378
[30] Hoffmann, N.; Fuchs, F. W.; Dannehl, J., Models and effects of different updating and sampling concepts to the control of grid-connected PWM converters—a study based on discrete time domain analysis, Proceedings of the Power Electronics and Applications (EPE 2011), IEEE
[31] Van de Sype, D. M.; De Gussemé, K.; De Belie, F. M. L. L.; Van den Bossche, A. P.; Melkebeek, J. A., Small-signal z-domain analysis of digitally controlled converters, IEEE Transactions on Power Electronics, 21, 2, 470-478 (2006) · doi:10.1109/tpel.2005.869758
[32] Goodwin, G. C.; Graebe, S. F.; Salgado, M. E., Control System Design (2001), Prentice-Hall Upper Saddle River, NJ, USA
[33] Ghanem, A.; Rashed, M.; Sumner, M.; Elsayes, M. A.; Mansy, I. I. I., Hybrid active damping of LCL-filtered grid connected converter, Proceedings of the Power Electronics Conference (SPEC), IEEE Annual Southern, IEEE · doi:10.1109/spec.2016.7846193
[34] Dannehl, J.; Wessels, C.; Fuchs, F. W., Limitations of voltage-oriented PI current control of grid-connected PWM rectifiers with LCL filters, IEEE Transactions on Industrial Electronics, 56, 2, 380-388 (2009) · doi:10.1109/tie.2008.2008774
[35] Kukkola, J.; Hinkkanen, M., State observer for grid-voltage sensorless control of a grid-connected converter equipped with an LCL filter, EPE Journal, 25, 3, 21-28 (2015) · doi:10.1080/09398368.2015.11876826
[36] Yepes, A. G.; Freijedo, F. D.; Doval-Gandoy, J.; López, O.; Malvar, J.; Fernandez-Comesana, P., Effects of discretization methods on the performance of resonant controllers, IEEE Transactions on Power Electronics, 25, 7, 1692-1712 (2010) · doi:10.1109/tpel.2010.2041256
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.