×

Dynamic behavior of a delay cholera model with constant infectious period. (English) Zbl 1458.92082

Summary: In this paper, a delay cholera model with constant infectious period is investigated. By analyzing the characteristic equations, the local stability of a disease-free equilibrium and an endemic equilibrium of the model is established. It is proved that if the basic reproductive number \(\mathcal{R}_0>1\), the system is permanent. If \(\mathcal{R}_0<1\), by means of an iteration technique, sufficient conditions are obtained for the global asymptotic stability of the disease-free equilibrium. If \(\mathcal{R}_0>1\), also by means of an iteration technique, sufficient conditions are obtained for the global asymptotic stability of the endemic equilibrium. Numerical simulations are carried out to illustrate the main theoretical results.

MSC:

92D30 Epidemiology
34D23 Global stability of solutions to ordinary differential equations
34K20 Stability theory of functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. S. Azman, K. E. Rudolph, D. A. T. Cummings and J. Lessler,The incubation period of cholera: A systematic review, Journal of Infection, 2013, 66(5), 432- 438.
[2] N. Bacaër and E. Ait Dads,On the biological interpretation of a definition · Zbl 1303.92111
[3] E. Beretta and Y. Kuang,Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 2002, 33, 1144-1165. · Zbl 1013.92034
[4] F. Brauer, Z. Shuai and P. van den Driessche,Dynamics of an age-of-infection cholera model, Math. Biosci. Eng., 2013, 10, 1335-1349. · Zbl 1273.92050
[5] V. Capasso and S. L. Paveri-Fontana,A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Rev. Epidemiol. Sante Publique, 1979, 27, 121-132.
[6] C. T. Codeço,Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir, BMC Infect. Dis., 2001, 1-1.
[7] P. van den Driessche and J. Watmough, Reproductionnumbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci, 2002, 180, 29-48. · Zbl 1015.92036
[8] S. Gao, Z. Teng and D. Xie,Analysis of a delayed SIR epidemic model with pulse vaccination, Chaos, Solitons & Fractals, 2009, 40(2), 1004-1011. · Zbl 1197.34123
[9] M. Gatto, L. Mari, E Bertuzzo., R. Casagrandi, L. Righetto and I. RodriguezIturbe,A. Rinaldo, Generalized reproduction numbers and the prediction of patterns in waterborne disease, Proceedings of the National Academy of Sciences, 2012, 48, 19703-19708.
[10] M. Gatto, L. Mari, E Bertuzzo., R. Casagrandi, L. Righetto, I. RodriguezIturbe and A. Rinaldo,Spatially explicit conditions for waterborne pathogen invasionz, The American Naturalist, 2013, 182, 328-346.
[11] M. Giaquinta and G. Modica,Mathematical Analysis. An Introduction to Functions of Several Variables, Birkhauser Boston, Inc., Boston, MA, 2009. · Zbl 1177.26001
[12] D. M. Hartley, J. Glenn Morris Jr and D. L. Smith,Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemic?PLoS Medicine, 2006, 3(1), e7.
[13] T. R. Hendrix,The pathophysiology of cholera, Bull. NY Acad. Med., 1971, 47, 1169-1180.
[14] H. W. Hethcote and D. W. Tudor,Integral equation models for endemic infectious diseases, Journal of Mathematical Biology, 1980, 9(1), 37. · Zbl 0433.92026
[15] D. L. Heymann (Ed.),Control of Communicable Diseases Manual, nineteenth ed., American Public Health Association, Washington, 2008.
[16] M. S. Islam, M. A. Miah, M. K. Hasan, R. B. Sack and M. J. Albert.Detection of non-culturable Vibrio cholerae O1 associated with a cyanobacterium from an aquatic environment in Bangladesh, T. Roy. Soc. Trop. Med. H., 1994, 88, 298-299.
[17] J. B. Kaper, J. G. Morrisa and M. M. LevineCholera, Clin. Microbiol. Rev., 1995, 8, 48-86.
[18] J. Lin, R. Xu and X. Tian,Global dynamics of an age-structured cholera model with both human-to-human and environment-to-human transmissions and saturation incidence, Applied Mathematical Modelling, 2018, 63, 688-708. · Zbl 1480.92203
[19] I. M. Longini Jr, A. Nizam, M. Ali, M. Yunus, N. Shenvi and J.D. Clemens, Controlling endemic cholera with oral vaccines, PLoS Med, 2007, 4(11), e336.
[20] R. L. Miller Neilan, E. Schaefer, H. Gaff, K. R. Fister and S. Lenhart,Modeling optimal intervention strategies for cholera, Bull. Math. Biol, 2010, 72, 2004- 2018. · Zbl 1201.92045
[21] Z. Mukandavire and W. Garira,Sex-structured HIV/AIDS model to analyse the effects of condom use with application to Zimbabwe, J. Math. Bio, 2007, 54, 669-699. · Zbl 1114.92060
[22] E. J. Nelson, J. B. Harris, J. G. Morris, S. B. Calderwood and A. Camilli, Cholera transmission: the host, pathogen and bacteriophage dynamics, Nat. Rev. Microbiol., 2009, 7, 693-702.
[23] M. Pascual, M. J. Bouma and A. P. Dobson,Cholera and climate: revisiting the quantitative evidence, Microbes Infect., 2002, 4, 237-245.
[24] A. Rinaldo, E. Bertuzzo, L. Mari, L. Righetto, M. Blokesch and M. Gatto, Reassessment of the 2010-2011 Haiti cholera outbreak and rainfall-driven multiseason projections, Proceedings of the National Academy of Sciences, 2012, 109(17), 6602-6607.
[25] L. Righetto, R. Casagrandi, E. Bertuzzo, L. Mari, M. Gatto, I. RodriguezIturbe and A. Rinaldo,The role of aquatic reservoir fluctuations in long-term cholera patterns, Epidemics, 2013, 4, 33-42.
[26] S. Ruan and J. Wei,On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion, IMA J. Mathematics Applied in Medicine and Biology, 2001, 18, 41-52. · Zbl 0982.92008
[27] Z. Shuai, J. H. Tien and P. van den Driessche,Cholera models with hyperinfectivity and temporary immunity, Bulletin of Mathematical Biology, 2012, 74(10), 2423-2445. · Zbl 1312.92041
[28] J.P. Tian and J. Wang,Global stability for cholera epidemic models, Mathematical Biosciences, 2011, 232, 31-41. · Zbl 1217.92068
[29] V. Tudor, I. Strati and Smallpox,Cholera, Abacus Press, Tunbridge Wells, 1977.
[30] World Health Organization web page: http://www.who.int/mediacentre/ factsheets/fs107/en/
[31] R. Xu and Y. Du,A delayed SIR epidemic model with saturation incidence and constant infectious period, J. Appl. Math. Comp., 2010, 35, 229-250. · Zbl 1223.34116
[32] X. Zhou and J. Cui,Modelling and stability analysis for a cholera model with vaccination, Math. Method. Appl. Sci, 2011, 34(14), 1711-1724. · Zbl 1223.92037
[33] X.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.