×

Thermodynamics and reentrant phase transition for logarithmic nonlinear charged black holes in massive gravity. (English) Zbl 1454.83093

Summary: We investigate a new class of \((n+1)\)-dimensional topological black hole solutions in the context of massive gravity and in the presence of logarithmic nonlinear electrodynamics. Exploring higher-dimensional solutions in massive gravity coupled to nonlinear electrodynamics is motivated by holographic hypothesis as well as string theory. We first construct exact solutions of the field equations and then explore the behavior of the metric functions for different values of the model parameters. We observe that our black holes admit the multi-horizons caused by a quantum effect called anti-evaporation. Next, by calculating the conserved and thermodynamic quantities, we obtain a generalized Smarr formula. We find that the first law of black holes thermodynamics is satisfied on the black hole horizon. We study thermal stability of the obtained solutions in both canonical and grand canonical ensembles. We reveal that depending on the model parameters, our solutions exhibit a rich variety of phase structures. Finally, we explore, for the first time without extending thermodynamics phase space, the critical behavior and reentrant phase transition for black hole solutions in massive gravity theory. We realize that there is a zeroth-order phase transition for a specified range of charge value and the system experiences a large/small/large reentrant phase transition due to the presence of nonlinear electrodynamics.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
83C57 Black holes
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S. N. Gupta, Phys. Rev.96 (1954) 1683; S. Weinberg, Phys. Rev. B988 (1965) 138; S. Deser, Gen. Relativ. Gravit.1 (1970) 9; A. V. Hradyskyi and Y. P. Stepanoskiy, Ukr. J. Phys.63 (2018) 7.
[2] LIGO Scientific and Virgo Collabs. (Abbott, B. P.et al.), Phys. Rev. Lett.119 (2017) 161101.
[3] LIGO Scientific and Virgo Collabs. (Abbott, B. P.et al.), Phys. Rev. Lett.116 (2016) 061102.
[4] Casalino, A., Rinaldi, M., Sebastiani, L. and Vagnozzi, S., Phys. Dark Univ.22 (2018) 108.
[5] D. Vegh, arXiv:1301.0537 [hep-th].
[6] Fierz, M. and Paul, W., Proc. R. Soc. A173 (1939) 211. · JFM 65.1532.01
[7] van Dam, H. and Veltman, M. J. G., Nucl. Phys. B22 (1970) 397.
[8] Boulware, D. G. and Deser, S., Phys. Rev. D6 (1972) 3368.
[9] Vainshtein, A. I., Phys. Lett. B39 (1972) 393.
[10] de Rham, C., Gabadadze, G. and Tolley, A. J., Phys. Rev. Lett.106 (2011) 231101.
[11] A. H. Chamseddine and V. Mukhanov, J. High Energy Phys.1303 (2013) 092; S. Deser and A. Waldron, Phys. Rev. Lett.110 (2013) 111101.
[12] A. Salam and J. A. Strathdee, Phys. Rev. D16 (1977) 2668; Z. Berezhiani, D. Comelli, F. Nesti and L. Pilo, J. High Energy Phys.7 (2008) 130; T. M. Nieuwenhuizen, Phys. Rev. D84 (2011) 024038; L. Berezhiani, G. Chkareuli, C. de Rham, G. Gabadadze and A. J. Tolley, Phys. Rev. D85 (2012) 044024; R. Brito, V. Cardoso and P. Pani, Phys. Rev. D88 (2013) 064006; E. Babichev and A. Fabbri, J. High Energy Phys.1407 (2014) 016; A. Adams, D. A. Roberts and O. Saremi, Phys. Rev. D91 (2015) 046003; J. Xu, L. M. Cao and Y. P. Hu, Phys. Rev. D91 (2015) 124033.
[13] Mazuet, C. and Volkov, M. S., J. Cosmol. Astropart. Phys.2018 (2018) 012. · Zbl 1527.81094
[14] Koyama, K., Niz, G. and Tasinato, G., Phys. Rev. D84 (2011) 064033.
[15] M. Blake and D. Tong, Phys. Rev. D88 (2013) 106004; R. A. Davison, Phys. Rev. D88 (2013) 086003; R. A. Davison, K. Schalm and J. Zaanen, Phys. Rev. B89 (2014) 245116.
[16] Cai, R. G., Hu, Y. P., Pan, Q. Y. and Zhang, Y. L., Phys. Rev. D91 (2015) 024032.
[17] Ghodsi, A. and Mahdavian, D., J. High Energy Phys.1206 (2012) 131.
[18] A. Gruzinov and M. Mirbabayi, arXiv:1106.2551 [hep-th].
[19] Katsuragawa, T., Nojiri, S., Odintsov, S. D. and Yamazaki, M., Phys. Rev. D93 (2016) 124013.
[20] G. Dvali, G. Gabadadze and M. Shifman, Phys. Rev. D67 (2003) 044020; G. Dvali, S. Hofmann and J. Khoury, Phys. Rev. D76 (2007) 084006; B. Eslam Panah and S. H. Hendi, Europhys. Lett.125 (2019) 60006.
[21] de Rham, C., Living Rev. Relat.17 (2014) 7. · Zbl 1320.83018
[22] Hinterbichler, K., Proc. \(51\) st Rencontres de Moriond (ARISF, 2016), ISBN: 979-10-968-7901-4.
[23] Capela, F. and Tinyakov, P. G., J. High Energy Phys.1104 (2011) 042.
[24] Born, M. and Infeld, L., Proc. R. Soc. Lond.144 (1934) 425. · Zbl 0008.42203
[25] Heisenberg, W. and Euler, H., Z. Phys.98 (1936) 714. · Zbl 0013.18503
[26] Plebanski, J., Non-Linear Electrodynamics-A Study (CIEA del IPN, Mexico City, 1966).
[27] Seiberg, N. and Witten, E., J. High Energy Phys.9 (1999) 032. · Zbl 0957.81085
[28] E. Fradkin and A. Tseytlin, Phys. Lett. B163 (1985) 123; E. Bergshoeff, E. Sezgin, C. Pope and P. Townsend, Phys. Lett. B188 (1987) 70; R. Metsaev, M. Rahmanov and A. Tseytlin, Phys. Lett. B193 (1987) 207; C. Callan, C. Lovelace, C. Nappi and S. Yost, Nucl. Phys. B308 (1988) 221.
[29] Halilsoy, M., Gurtug, O. and Mazharimousavi, S. H., Astropart. Phys.68 (2015) 1.
[30] J. Bardeen, GR \(5\), Tiflis, U.S.S.R., and Published in the Conf. Proc. U.S.S.R. (USSR, 1968).
[31] Soleng, H., Phys. Rev. D52 (1995) 6178.
[32] S. H. Hendi, J. High Energy Phys.3 (2012) 065; S. H. Hendi, Ann. Phys.333 (2013) 282.
[33] Sheykhi, A., Naeimipour, F. and Zebarjad, S. M., Phys. Rev. D91 (2015) 124057.
[34] Hajkhalili, S. and Sheykhi, A., Int. J. Mod Phys. D27 (2018) 1850075. · Zbl 1430.83045
[35] Dehyadegari, A., Sheykhi, A. and Zangeneh, M. Kord, Phys. Lett. B758 (2016) 226. · Zbl 1365.83012
[36] Sheykhi, A. and Mahmoudi, Z., Gen. Relativ. Gravit.47 (2015) 90. · Zbl 1327.83249
[37] Sheykhi, A., Naeimipour, F. and Zebarjad, S. M., Gen. Relativ. Gravit.48 (2016) 33. · Zbl 1337.83092
[38] Hendi, S. H., Panah, B. Eslam and Panahiyan, S., Phys. Rev. D91 (2015) 084031.
[39] S. H. Hendi, J. High Energy Phys.1203 (2012) 065; S. H. Hendi, Ann. Phys.346 (2014) 42; A. Sheykhi and F. Shamsi, Int. J. Theor. Phys.56 (2017) 916; A. Sheykhi, D. Hashemi Asl and A. Dehyadegari, Phys. Lett. B781 (2018) 139.
[40] Dayyani, Z., Sheykhi, A., Dehghani, M. H. and Hajkhalili, S., Eur. Phys. J. C78 (2018) 152.
[41] T. Katsuragawa, Universe1 (2015) 158; T. Katsuragawa and S. Nojiri, Phys. Rev. D91 (2015) 084001.
[42] Maldacena, J. M., Adv. Theor. Math. Phys.2 (1998) 231. · Zbl 0914.53047
[43] Hendi, S. H., Panah, B. Eslam and Panahiyan, S., J. High Energy Phys.1511 (2015) 157.
[44] J. D. Beckenstein, Phys. Rev. D7 (1973) 2333; S. W. Hawking and C. J. Hunter, Phys. Rev. D59 (1999) 044025.
[45] Dehyadegari, A., Sheykhi, A. and Montakhab, A., Phys. Lett. B768 (2017) 235. · Zbl 1370.83045
[46] Dehyadegari, A., Sheykhi, A. and Montakhab, A., Phys. Rev. D96 (2017) 084012.
[47] Dehyadegari, A. and Sheykhi, A., Phys. Rev. D98 (2018) 024011.
[48] Dayyani, Z. and Sheykhi, A., Phys. Rev. D98 (2018) 104026.
[49] Yazdikarimi, H., Sheykhi, A. and Dayyani, Z., Phys. Rev. D99 (2019) 124017.
[50] Sheykhi, A., Arab, M., Dayyani, Z. and Dehyadegari, A., Phys. Rev. D101 (2020) 064019.
[51] Dehyadegari, A., Majhi, B. R., Sheykhi, A. and Montakhab, A., Phys. Lett. B791 (2019) 30. · Zbl 1411.83041
[52] Gunasekaran, S., Kubiznak, D. and Mann, R. B., J. High Energy Phys.1211 (2012) 110.
[53] Altamirano, N., Kubiznak, D. and Mann, R. B., Phys. Rev. D88 (2013) 101502.
[54] D. C. Zou, R. Yue and M. Zhang, Eur. Phys. J. C77 (2017) 256; M. Zhang, D. C. Zou and R. Yue, Adv. High Energy Phys.2017 (2017) 3819246.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.