×

Analysis of HIV models with multiple target cell populations and general nonlinear rates of viral infection and cell death. (English) Zbl 1519.92317

Summary: HIV can infect different cell populations such as CD4+ T cells and macrophages. In this paper, we study the global property of the solution of an HIV model with two target cell populations. The model includes general nonlinear rates of viral infection and cell death. For each class of target cells, the time delay between viral entry into cells and viral production is included in the model. We obtain the basic reproductive number of the model, which is shown to provide a threshold condition determining the long-term behavior of the solution of the model. Specifically, we show that the infection-free equilibrium is globally asymptotically stable when the basic reproductive number is less than or equal to 1, and that the infected equilibrium is globally asymptotically stable when the basic reproductive number is greater than 1. We also extend the model with two target cell populations to a general model with \(n\) populations. Similar global properties are obtained for the general model. Numerical simulations are performed to illustrate the stability results and to evaluate the relative contribution to viral production from the two cell populations.

MSC:

92D30 Epidemiology
92C37 Cell biology
34D23 Global stability of solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, R. M.; May, R. M., The population dynamics of microparasites and their invertebrate hosts, Philos. Trans. R. Soc. B, 291, 1054, 451-524 (1981)
[2] Andersen, R. M.; May, R. M., Epidemiological parameters of HIV transmission, Nature, 333, 6173, 514-519 (1988)
[3] Burg, D.; Rong, L.; Neumann, A. U.; Dahari, H., Mathematical modeling of viral kinetics under immune control during primary HIV-1 infection, J. Theoret. Biol., 259, 751-759 (2009) · Zbl 1402.92384
[4] Burke, D. S., Human hiv vaccine trials: does antibody-dependent enhancement pose a genuine risk, Perspect. Biol. Med., 35, 4, 511-530 (1992)
[5] Callaway, D. S.; Perelson, A. S., HIV-1 infection and low steady state viral loads, Bull. Math. Biol., 64, 1, 29-64 (2002) · Zbl 1334.92227
[6] Culshaw, R. V.; Ruan, S., A delay-differential equation model of HIV infection of cd \(4^+\) T-cells, Math. Biosci., 165, 1, 27-39 (2000) · Zbl 0981.92009
[7] Elaiw, A., Global properties of a class of virus infection models with multitarget cells, Nonlinear Dynam., 69, 1-2, 423-435 (2012) · Zbl 1254.92064
[8] Elaiw, A.; Hassanien, I.; Azoz, S., Global stability of HIV infection models with intracellular delays, J. Korean Math. Soc., 49, 4, 779-794 (2012) · Zbl 1256.34068
[9] Georgescu, P.; Hsieh, Y.-H., Global stability for a virus dynamics model with nonlinear incidence of infection and removal, SIAM J. Appl. Math., 67, 2, 337-353 (2006) · Zbl 1109.92025
[10] Gourley, S. A.; Kuang, Y.; Nagy, J. D., Dynamics of a delay differential equation model of hepatitis B virus infection, J. Biol. Dyn., 2, 2, 140-153 (2008) · Zbl 1140.92014
[11] Hale, J. K., Introduction to Functional Differential Equations, Vol. 99 (1993), Springer · Zbl 0787.34002
[12] Herz, A.; Bonhoeffer, S.; Anderson, R. M.; May, R. M.; Nowak, M. A., Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay, Proc. Natl. Acad. Sci., 93, 14, 7247-7251 (1996)
[13] Holte, S. E.; Melvin, A. J.; Mullins, J. I.; Tobin, N. H.; Frenkel, L. M., Density-dependent decay in HIV-1 dynamics, J. Acquir. Immune Defic. Syndr., 41, 3, 266-276 (2006)
[14] Huang, G.; Takeuchi, Y.; Ma, W., Lyapunov functionals for delay differential equations model of viral infections, SIAM J. Appl. Math., 70, 7, 2693-2708 (2010) · Zbl 1209.92035
[15] Kajiwara, T.; Sasaki, T.; Takeuchi, Y., Construction of lyapunov functionals for delay differential equations in virology and epidemiology, Nonlinear Anal. RWA, 13, 4, 1802-1826 (2012) · Zbl 1257.34053
[16] Koenig, S.; Gendelman, H. E.; Orenstein, J. M.; Dal Canto, M. C.; Pezeshkpour, G. H.; Yungbluth, M.; Janotta, F.; Aksamit, A.; Martin, M. A.; Fauci, A. S., Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy, Science, 233, 4768, 1089-1093 (1986)
[17] Korobeinikov, A., Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69, 6, 1871-1886 (2007) · Zbl 1298.92101
[18] Korobeinikov, A., Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence and non-linear incidence rate, Math. Med. Biol., 26, 3, 225-239 (2009) · Zbl 1171.92034
[19] Kuang, Y., Delay Differential Equations: With Applications in Population Dynamics (1993), Academic Press · Zbl 0777.34002
[20] Li, M. Y.; Graef, J. R.; Wang, L.; Karsai, J., Global dynamics of a SEIR model with varying total population size, Math. Biosci., 160, 2, 191-213 (1999) · Zbl 0974.92029
[21] Li, M. Y.; Shu, H., Global dynamics of an in-host viral model with intracellular delay, Bull. Math. Biol., 72, 6, 1492-1505 (2010) · Zbl 1198.92034
[22] Layne, S. P.; Spouge, J. L.; Dembo, M., Quantifying the infectivity of human immunodeficiency virus, Proc. Natl. Acad. Sci., 86, 12, 4644-4648 (1989)
[23] Lund, O.; Hansen, J.; Mosekilde, E.; Nielsen, J. O.; Hansen, J.-E. S., A model of enhancement and inhibition of HIV infection of monocytes by antibodies against HIV, J. Biol. Phys., 19, 2, 133-145 (1993)
[24] Lund, O.; Mosekilde, E.; Hansen, J., Period doubling route to chaos in a model of hiv infection of the immune system: A comment on the anderson-may model, Simul. Pract. Theory, 1, 2, 49-55 (1993)
[25] McCluskey, C. C., Complete global stability for an SIR epidemic model with delay-distributed or discrete, Nonlinear Anal. RWA, 11, 1, 55-59 (2010) · Zbl 1185.37209
[26] McLean, A.; Kirkwood, T., A model of human immunodeficiency virus infection in T helper cell clones, J. Theoret. Biol., 147, 2, 177-203 (1990)
[27] Mittler, J. E.; Sulzer, B.; Neumann, A. U.; Perelson, A. S., Influence of delayed viral production on viral dynamics in HIV-1 infected patients, Math. Biosci., 152, 2, 143-163 (1998) · Zbl 0946.92011
[28] Nakata, Y., Global dynamics of a cell mediated immunity in viral infection models with distributed delays, J. Math. Anal. Appl., 375, 1, 14-27 (2011) · Zbl 1221.34225
[29] Nelson, P. W.; Murray, J. D.; Perelson, A. S., A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci., 163, 2, 201-215 (2000) · Zbl 0942.92017
[30] Nelson, P. W.; Perelson, A. S., Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci., 179, 1, 73-94 (2002) · Zbl 0992.92035
[31] Nowak, M. A.; Anderson, R. M.; McLean, A. R.; Wolfs, T.; Goudsmit, J.; May, R. M., Antigenic diversity thresholds and the development of aids, Science, 254, 5034, 963-969 (1991)
[32] Orenstein, J. M.; Fox, C.; Wahl, S. M., Macrophages as a source of HIV during opportunistic infections, Science, 276, 5320, 1857-1861 (1997)
[33] Pawelek, K. A.; Liu, S.; Pahlevani, F.; Rong, L., A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data, Math. Biosci., 235, 98-109 (2012) · Zbl 1241.92042
[34] Perelson, A. S.; Nelson, P. W., Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41, 1, 3-44 (1999) · Zbl 1078.92502
[35] Pope, M.; Betjes, M. G.H.; Romani, N.; Hirmand, H.; Cameron, P. U.; Hoffman, L.; Gezelter, S.; Schuler, G.; Steinman, R. M., Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1, Cell, 78, 3, 389-398 (1994)
[36] Reibnegger, G.; Fuchs, D.; Hausen, A.; Werner, E. R.; Dierich, M. P.; Wachter, H., Theoretical implications of cellular immune reactions against helper lymphocytes infected by an immune system retrovirus, Proc. Natl. Acad. Sci., 84, 20, 7270-7274 (1987)
[37] Rong, L.; Feng, Z.; Perelson, A. S., Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy, SIAM J. Appl. Math., 67, 731-756 (2007) · Zbl 1121.92043
[38] Rong, L.; Feng, Z.; Perelson, A. S., Emergence of HIV-1 drug resistance during antiretroviral treatment, Bull. Math. Biol., 69, 2027-2060 (2007) · Zbl 1298.92053
[39] Rong, L.; Perelson, A. S., Modeling HIV persistence, the latent reservoir, and viral blips, J. Theoret. Biol., 260, 2, 308-331 (2009) · Zbl 1402.92409
[40] Rosenberg, Z. F.; Fauci, A. S., Immunopathogenic mechanisms of HIV infection: cytokine induction of HIV expression, Immunol. Today, 11, 176-180 (1990)
[41] Sedaghat, A. R.; Dinoso, J. B.; Shen, L.; Wilke, C. O.; Siliciano, R. F., Decay dynamics of HIV-1 depend on the inhibited stages of the viral life cycle, Proc. Natl. Acad. Sci., 105, 4832-4837 (2008)
[42] Takeda, A.; Tuazon, C. U.; Ennis, F. A., Antibody-enhanced infection by HIV-1 via fc receptor-mediated entry, Science, 242, 4878, 580-583 (1988)
[43] Van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 1, 29-48 (2002) · Zbl 1015.92036
[44] Wang, X.; Elaiw, A.; Song, X., Global properties of a delayed HIV infection model with CTL immune response, Appl. Math. Comput., 218, 18, 9405-9414 (2012) · Zbl 1245.92036
[45] Wang, T.; Hu, Z.; Liao, F.; Ma, W., Global stability analysis for delayed virus infection model with general incidence rate and humoral immunity, Math. Comput. Simulation, 89, 13-22 (2013) · Zbl 1490.92118
[46] Wang, X.; Liu, S., A class of delayed viral models with saturation infection rate and immune response, Math. Methods Appl. Sci., 36, 2, 125-142 (2013) · Zbl 1317.34171
[47] Wang, X.; Liu, S.; Song, X., Dynamics of a non-autonomous HIV-1 infection model with delays, Int. J. Biomath., 6, 5, 1-26 (2013) · Zbl 1300.92053
[48] Wang, X.; Tao, Y.; Song, X., A delayed HIV-1 infection model with Beddington-Deangelis functional response, Nonlinear Dynam., 62, 1-2, 67-72 (2010) · Zbl 1209.34102
[49] Wang, X.; Tao, Y.; Song, X., Global stability of a virus dynamics model with Beddington-Deangelis incidence rate and CTL immune response, Nonlinear Dynam., 66, 4, 825-830 (2011) · Zbl 1242.92045
[50] Zöller, M.; Lopatta, D.; Benato, B.; Andrighetto, G., Oscillation of antibody production and regulatory T cells in response to antigenic stimulation, Eur. J. Immunol., 15, 12, 1198-1203 (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.