×

A meshless method for time fractional nonlinear mixed diffusion and diffusion-wave equation. (English) Zbl 1459.65137

Summary: The paper aims to put forth a radial basis function-based meshless approach for the numerical solution of the time-fractional nonlinear mixed diffusion and diffusion-wave equation. The time-fractional derivative is defined in Caputo’s sense and discretized by the finite difference method. The spatial discretization is done using a radial basis function-based local meshless method. Stability of time semi-discretization is rigorously set up. Proposed method’s efficiency is validated with different numerical examples on an irregular domain with uniform and nonuniform points. Numerical results obtained demonstrate the ability and accuracy of the present method.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65D12 Numerical radial basis function approximation
35R11 Fractional partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abbaszadeh, Mostafa; Dehghan, Mehdi, An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate, Numer. Algorithms, 75, 1, 173-211 (2017) · Zbl 1412.65131
[2] Abbaszadeh, Mostafa; Dehghan, Mehdi, Meshless upwind local radial basis function-finite difference technique to simulate the time-fractional distributed-order advection-diffusion equation, Eng. Comput., 1-17 (2019)
[3] Abbaszadeh, Mostafa; Dehghan, Mehdi, Direct meshless local Petrov-Galerkin (dmlpg) method for time-fractional fourth-order reaction-diffusion problem on complex domains, Comput. Math. Appl., 79, 3, 876-888 (2020) · Zbl 1443.65188
[4] Abbaszadeh, Mostafa; Dehghan, Mehdi, Reduced order modeling of time-dependent incompressible Navier-Stokes equation with variable density based on a local radial basis functions-finite difference (lrbf-fd) technique and the pod/deim method, Comput. Methods Appl. Mech. Eng., 364, Article 112914 pp. (2020) · Zbl 1442.65287
[5] Avazzadeh, Zakieh; Chen, Wen; Hosseini, Vahid Reza, The coupling of rbf and fdm for solving higher order fractional partial differential equations, (Applied Mechanics and Materials, vol. 598 (2014), Trans Tech Publ.), 409-413 · Zbl 1287.65085
[6] Avazzadeh, Z.; Hosseini, V. R.; Chen, W., Radial basis functions and fdm for solving fractional diffusion-wave equation, Iran. J. Sci. Technol., 38, 3, 205-212 (2014)
[7] Bagley, Ronald L.; Torvik, P. J., A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27, 3, 201-210 (1983) · Zbl 0515.76012
[8] Baseri, A.; Abbasbandy, Saeid; Babolian, Esmail, A collocation method for fractional diffusion equation in a long time with Chebyshev functions, Appl. Math. Comput., 322, 55-65 (2018) · Zbl 1427.65281
[9] Bhardwaj, Akanksha; Kumar, Alpesh, Numerical solution of time fractional Tricomi-type equation by an rbf based meshless method, Eng. Anal. Bound. Elem., 118, 96-107 (2020) · Zbl 1464.65136
[10] Bhardwaj, Akanksha; Kumar, Alpesh, A numerical solution of time-fractional mixed diffusion and diffusion-wave equation by an rbf-based meshless method, Eng. Comput. (2020) · Zbl 1464.65136
[11] Bhrawy, A. H.; Zaky, Mahmoud A., A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys., 281, 876-895 (2015) · Zbl 1352.65386
[12] Bhrawy, A. H.; Zaky, M. A.; Baleanu, D., New numerical approximations for space-time fractional Burgers’ equations via a Legendre spectral-collocation method, Rom. Rep. Phys., 67, 2, 340-349 (2015)
[13] Chen, Wen; Ye, Linjuan; Sun, Hongguang, Fractional diffusion equations by the Kansa method, Comput. Math. Appl., 59, 5, 1614-1620 (2010) · Zbl 1189.35356
[14] Chinchapatnam, P. P.; Djidjeli, K.; Nair, P. B., Unsymmetric and symmetric meshless schemes for the unsteady convection-diffusion equation, Comput. Methods Appl. Mech. Eng., 195, 19-22, 2432-2453 (2006) · Zbl 1125.76053
[15] Dehghan, Mehdi; Abbaszadeh, Mostafa, Proper orthogonal decomposition variational multiscale element free Galerkin (pod-vmefg) meshless method for solving incompressible Navier-Stokes equation, Comput. Methods Appl. Mech. Eng., 311, 856-888 (2016) · Zbl 1439.76060
[16] Dehghan, Mehdi; Abbaszadeh, Mostafa, An efficient technique based on finite difference/finite element method for solution of two-dimensional space/multi-time fractional Bloch-Torrey equations, Appl. Numer. Math., 131, 190-206 (2018) · Zbl 1395.65074
[17] Dehghan, Mehdi; Abbaszadeh, Mostafa; Mohebbi, Akbar, An implicit rbf meshless approach for solving the time fractional nonlinear sine-Gordon and Klein-Gordon equations, Eng. Anal. Bound. Elem., 50, 412-434 (2015) · Zbl 1403.65082
[18] Dehghan, Mehdi; Abbaszadeh, Mostafa; Mohebbi, Akbar, Analysis of a meshless method for the time fractional diffusion-wave equation, Numer. Algorithms, 73, 2, 445-476 (2016) · Zbl 1352.65298
[19] Dehghan, Mehdi; Mohammadi, Vahid, The numerical simulation of the phase field crystal (pfc) and modified phase field crystal (mpfc) models via global and local meshless methods, Comput. Methods Appl. Mech. Eng., 298, 453-484 (2016) · Zbl 1423.76321
[20] Dehghan, Mehdi; Safarpoor, Mansour; Abbaszadeh, Mostafa, Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations, J. Comput. Appl. Math., 290, 174-195 (2015) · Zbl 1321.65129
[21] Feng, Libo; Liu, Fawang; Turner, Ian, Finite difference/finite element method for a novel 2d multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on convex domains, Commun. Nonlinear Sci. Numer. Simul., 70, 354-371 (2019) · Zbl 1464.65119
[22] Feng, Libo; Liu, Fawang; Turner, Ian; Zheng, Liancun, Novel numerical analysis of multi-term time fractional viscoelastic non-newtonian fluid models for simulating unsteady MHD Couette flow of a generalized Oldroyd-B fluid, Fract. Calc. Appl. Anal., 21, 4, 1073-1103 (2018) · Zbl 1439.76120
[23] Gao, Guang-hua; Sun, Zhi-zhong; Zhang, Ya-nan, A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions, J. Comput. Phys., 231, 7, 2865-2879 (2012) · Zbl 1242.65160
[24] Ghehsareh, Hadi Roohani; Zaghian, Ali; Raei, M., A local weak form meshless method to simulate a variable order time-fractional mobile-immobile transport model, Eng. Anal. Bound. Elem., 90, 63-75 (2018) · Zbl 1403.65089
[25] Hidayat, Mas Irfan P.; Ariwahjoedi, Bambang; Parman, Setyamartana, B-spline collocation method for boundary value problems in complex domains, Int. J. Comput. Sci. Math., 7, 2, 110-125 (2016) · Zbl 1453.65421
[26] Hosseini, Vahid Reza; Chen, Wen; Avazzadeh, Zakieh, Numerical solution of fractional telegraph equation by using radial basis functions, Eng. Anal. Bound. Elem., 38, 31-39 (2014) · Zbl 1287.65085
[27] Hosseini, Vahid Reza; Shivanian, Elyas; Chen, Wen, Local integration of 2-d fractional telegraph equation via local radial point interpolant approximation, Eur. Phys. J. Plus, 130, 2, 33 (2015)
[28] Hosseini, Vahid Reza; Shivanian, Elyas; Chen, Wen, Local radial point interpolation (mlrpi) method for solving time fractional diffusion-wave equation with damping, J. Comput. Phys., 312, 307-332 (2016) · Zbl 1352.65348
[29] Jin, Bangti; Lazarov, Raytcho; Liu, Yikan; Zhou, Zhi, The Galerkin finite element method for a multi-term time-fractional diffusion equation, J. Comput. Phys., 281, 825-843 (2015) · Zbl 1352.65350
[30] Karamali, Gholamreza; Dehghan, Mehdi; Abbaszadeh, Mostafa, Numerical solution of a time-fractional pde in the electroanalytical chemistry by a local meshless method, Eng. Comput., 35, 1, 87-100 (2019)
[31] Kumar, Alpesh; Bhardwaj, Akanksha, A local meshless method for time fractional nonlinear diffusion wave equation, Numer. Algorithms (2020) · Zbl 1464.65136
[32] Kumar, Alpesh; Bhardwaj, Akanksha; Dubey, Shruti, A local meshless method to approximate the time-fractional telegraph equation, Eng. Comput. (2020) · Zbl 1464.65136
[33] Kumar, Alpesh; Bhardwaj, Akanksha; Kumar, B. V. Rathish, A meshless local collocation method for time fractional diffusion wave equation, Comput. Math. Appl., 78, 6, 1851-1861 (2019) · Zbl 1442.65293
[34] Li, Xinxiu, Numerical solution of fractional differential equations using cubic b-spline wavelet collocation method, Commun. Nonlinear Sci. Numer. Simul., 17, 10, 3934-3946 (2012) · Zbl 1250.65094
[35] Liu, Yang; Du, Yanwei; Li, Hong; He, Siriguleng; Gao, Wei, Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem, Comput. Math. Appl., 70, 4, 573-591 (2015) · Zbl 1443.65209
[36] Liu, Q.; Gu, YuanTong; Zhuang, Pinghui; Liu, Fawang; Nie, Y. F., An implicit rbf meshless approach for time fractional diffusion equations, Comput. Mech., 48, 1, 1-12 (2011) · Zbl 1377.76025
[37] Liu, Q.; Liu, Fawang; Turner, Ian; Anh, Vo, Finite element approximation for a modified anomalous subdiffusion equation, Appl. Math. Model., 35, 8, 4103-4116 (2011) · Zbl 1221.65257
[38] Liu, Zeting; Liu, Fawang; Zeng, Fanhai, An alternating direction implicit spectral method for solving two dimensional multi-term time fractional mixed diffusion and diffusion-wave equations, Appl. Numer. Math., 136, 139-151 (2019) · Zbl 1407.65114
[39] Liu, Yanqin; Sun, HongGuang; Yin, Xiuling; Feng, Libo, Fully discrete spectral method for solving a novel multi-term time-fractional mixed diffusion and diffusion-wave equation, Z. Angew. Math. Phys., 71, 1, 21 (2020) · Zbl 1450.65132
[40] Lopez-Marcos, J. C., A difference scheme for a nonlinear partial integrodifferential equation, SIAM J. Numer. Anal., 27, 1, 20-31 (1990) · Zbl 0693.65097
[41] Magin, Richard L., Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59, 5, 1586-1593 (2010) · Zbl 1189.92007
[42] Mardani, A.; Hooshmandasl, Mohammad Reza; Heydari, M. H.; Cattani, Carlo, A meshless method for solving the time fractional advection-diffusion equation with variable coefficients, Comput. Math. Appl., 75, 1, 122-133 (2018) · Zbl 1418.65144
[43] Metzler, Ralf; Klafter, Joseph, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A, Math. Gen., 37, 31, R161 (2004) · Zbl 1075.82018
[44] Mohebbi, Akbar; Abbaszadeh, Mostafa; Dehghan, Mehdi, Compact finite difference scheme and rbf meshless approach for solving 2d Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives, Comput. Methods Appl. Mech. Eng., 264, 163-177 (2013) · Zbl 1286.76014
[45] Mohebbi, Akbar; Abbaszadeh, Mostafa; Dehghan, Mehdi, The meshless method of radial basis functions for the numerical solution of time fractional telegraph equation, Int. J. Numer. Methods Heat Fluid Flow, 24, 8, 1636-1659 (2014) · Zbl 1357.65197
[46] Nagy, A. M., Numerical solution of time fractional nonlinear Klein-Gordon equation using sinc-Chebyshev collocation method, Appl. Math. Comput., 310, 139-148 (2017) · Zbl 1427.65294
[47] Oruç, Ömer, A meshless multiple-scale polynomial method for numerical solution of 3d convection-diffusion problems with variable coefficients, Eng. Comput. (2019) · Zbl 1481.65239
[48] Oruç, Ömer, Numerical solution to the deflection of thin plates using the two-dimensional Berger equation with a meshless method based on multiple-scale Pascal polynomials, Appl. Math. Model., 74, 441-456 (2019) · Zbl 1481.65239
[49] Oruç, Ömer, Two meshless methods based on local radial basis function and barycentric rational interpolation for solving 2d viscoelastic wave equation, Comput. Math. Appl. (2020) · Zbl 1440.74466
[50] Podlubny, Igor, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (1998), Elsevier · Zbl 0924.34008
[51] Salehi, Rezvan, A meshless point collocation method for 2-d multi-term time fractional diffusion-wave equation, Numer. Algorithms, 74, 4, 1145-1168 (2017) · Zbl 1365.65230
[52] Shekari, Younes; Tayebi, Ali; Heydari, Mohammad Hossein, A meshfree approach for solving 2d variable-order fractional nonlinear diffusion-wave equation, Comput. Methods Appl. Mech. Eng., 350, 154-168 (2019) · Zbl 1441.65079
[53] Shivanian, Elyas; Jafarabadi, Ahmad, The spectral meshless radial point interpolation method for solving an inverse source problem of the time-fractional diffusion equation, Appl. Numer. Math., 129, 1-25 (2018) · Zbl 1462.65134
[54] Sun, Zhi-zhong; Ji, Cui-cui; Du, Ruilian, A new analytical technique of the l-type difference schemes for time fractional mixed sub-diffusion and diffusion-wave equations, Appl. Math. Lett., 102, Article 106115 pp. (2020) · Zbl 1524.35717
[55] Sun, Zhi-zhong; Wu, Xiaonan, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56, 2, 193-209 (2006) · Zbl 1094.65083
[56] Sun, Hong; Zhao, Xuan; Sun, Zhi-zhong, The temporal second order difference schemes based on the interpolation approximation for the time multi-term fractional wave equation, J. Sci. Comput., 78, 1, 467-498 (2019) · Zbl 1437.35696
[57] Tayebi, A.; Shekari, Y.; Heydari, M. H., A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation, J. Comput. Phys., 340, 655-669 (2017) · Zbl 1380.65185
[58] Vong, Seakweng; Wang, Zhibo, A compact difference scheme for a two dimensional fractional Klein-Gordon equation with Neumann boundary conditions, J. Comput. Phys., 274, 268-282 (2014) · Zbl 1352.65273
[59] Wei, Song; Chen, Wen; Hon, Yiu-Chung, Implicit local radial basis function method for solving two-dimensional time fractional diffusion equations, Therm. Sci., 19, suppl. 1, 59-67 (2015)
[60] Wei, Song; Chen, Wen; Zhang, Yong; Wei, Hui; Garrard, Rhiannon M., A local radial basis function collocation method to solve the variable-order time fractional diffusion equation in a two-dimensional irregular domain, Numer. Methods Partial Differ. Equ., 34, 4, 1209-1223 (2018) · Zbl 1407.65231
[61] Yang, J. Y.; Zhao, Y. M.; Liu, N.; Bu, W. P.; Xu, T. L.; Tang, Y. F., An implicit mls meshless method for 2-d time dependent fractional diffusion-wave equation, Appl. Math. Model., 39, 3-4, 1229-1240 (2015) · Zbl 1432.65129
[62] Zeng, Fanhai; Zhang, Zhongqiang; Karniadakis, George Em, Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations, J. Comput. Phys., 307, 15-33 (2016) · Zbl 1352.65278
[63] Zhang, Shengliang, A symplectic procedure for two-dimensional coupled elastic wave equations using radial basis functions interpolation, Comput. Math. Appl., 76, 9, 2167-2178 (2018) · Zbl 1442.65302
[64] Zhang, Shengliang; Zhang, Liping, A flexible symplectic scheme for two-dimensional Schrödinger equation with highly accurate rbfs quasi-interpolation, Filomat, 33, 17, 5451-5461 (2019) · Zbl 1499.65729
[65] Zhao, Yanmin; Wang, Fenling; Hu, Xiaohan; Shi, Zhengguang; Tang, Yifa, Anisotropic linear triangle finite element approximation for multi-term time-fractional mixed diffusion and diffusion-wave equations with variable coefficient on 2d bounded domain, Comput. Math. Appl., 78, 5, 1705-1719 (2019) · Zbl 1442.65286
[66] Zhuang, Pinghui; Gu, YuanTong; Liu, Fawang; Turner, Ian; Yarlagadda, P. K.D. V., Time-dependent fractional advection-diffusion equations by an implicit mls meshless method, Int. J. Numer. Methods Eng., 88, 13, 1346-1362 (2011) · Zbl 1242.76262
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.