×

zbMATH — the first resource for mathematics

Linear rank statistics with estimated scores for testing independence. (English) Zbl 0731.62095
Summary: Let \((\xi_ 1,\eta_ 1),...,(\xi_ n,\eta_ n)\) be i.i.d. bivariate random variables with a nondegenerated continuous distribution function. In the testing problem H: (\(\xi\) \({}_ 1,\eta_ 1)\) are independent versus K: (\(\xi\) \({}_ 1,\eta_ 1)\) are positively dependent we estimate the score-generating functions of locally most powerful rank tests. Thereby a convergence theorem of K. Behnen and G. Neuhaus [Linear rank statistics with estimated scores for testing independence. Preprint (1982)] is used.

MSC:
62G10 Nonparametric hypothesis testing
62G05 Nonparametric estimation
62H20 Measures of association (correlation, canonical correlation, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Behnen, K. and Neuhaus, G. 1982.Linear rank statistics with estimated scores for testing independence, 82–84. Universitat Hamburg.
[2] DOI: 10.1214/aos/1176342613 · Zbl 0284.62016
[3] DOI: 10.1214/aoms/1177703735 · Zbl 0126.15003
[4] Csaki:fischer P., Publ. Math. Inst. Hung. Acad. Sci 5 pp 311– (1960)
[5] Csorgo, M. and Revesz, P. 1983.An N.N. Estimator for the Score Function, 62–82. Berlin: Humboldt.
[6] Farlie D.J., J. Roy. Statist. Soc 23 pp 128– (1961)
[7] DOI: 10.1002/zamm.19410210604 · Zbl 0026.33402
[8] Hajek J., Theory of rank tests (1967) · Zbl 0162.50503
[9] Hoeffding W., Schriften des Mathem 5 pp 179– (1940)
[10] Huskova M., Comm. Statist 2 pp 387– (1983)
[11] Krntorowitsch L.W., Funktionsanalysis in normierten Raumen (1964)
[12] Krasnoselski M., Naherungsverfahren zur Losung von Operatorgleichungen (1973)
[13] DOI: 10.1214/aoms/1177706532 · Zbl 0086.35102
[14] DOI: 10.1214/aoms/1177699260 · Zbl 0146.40601
[15] Morgenstern D., Mitt. fur Mathemat. Statist 8 pp 234– (1956)
[16] Rodel E., Math. Operationsforsch. u. Statist 2 pp 117– (1970)
[17] Rodel E., Robustness of Statistical Methods and Nonparametric Methods 2 pp 125– (1984)
[18] Rodel E., Unabhangigkeitstests fur zweidimensionale Verteilungen mit endlicher Kontingenz und ihre Adaption (1985)
[19] DOI: 10.1080/02331888708802028 · Zbl 0633.62047
[20] DOI: 10.1080/02331888708802053 · Zbl 0653.62028
[21] DOI: 10.1214/aos/1176342812 · Zbl 0303.62040
[22] Sarmanow O.W., Dokl. Akad. Nauk 53 pp 773– (1946)
[23] DOI: 10.1214/aos/1176345528 · Zbl 0468.62012
[24] Shirahata S., Bull. Math. Statist 16 pp 11– (1974)
[25] Oliveira Tiago De J., An. Fac. Ci. do Porto 48 pp 41– (1965)
[26] DOI: 10.1214/aoms/1177697197 · Zbl 0218.62043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.