×

Finite volume based asymptotic homogenization theory for periodic materials under anti-plane shear. (English) Zbl 1476.74148

Summary: A finite volume based approach is employed in the solution of unit cell problems at different orders of the asymptotic field expansion to construct a homogenization theory for anti-plane shear loading of unidirectional fiber-reinforced periodic structures. This new construction complements and further extends our recent contribution to asymptotic homogenization based on locally-exact elasticity unit cell solutions, the authors [ibid. 81, Article ID 103972, 15 p. (2020; Zbl 1523.74165)], to unit cells with multiple inclusions of arbitrary shapes. The present approach builds upon the previously developed finite-volume direct averaging micromechanics theory applicable under uniform strain fields, and extends it to account for strain gradients and non-vanishing microstructural scale relative to structural dimensions. The unit cell problems at different orders of the asymptotic field expansion are solved by satisfying local equilibrium equations in each subvolume of the discretized microstructure in a surface-averaged sense. This facilitates construction of local stiffness matrices at the subvolume level and subsequent assembly into the global stiffness matrix for the unit cell response under uniform and gradient strain fields. Comparison of the calculated microfluctuation functions and associated stress fields under uniform and gradient strain fields with those reported in the literature verifies the finite volume asymptotic solutions. The new theory’s ability to accurately recover local fields is further illustrated through comparison with the direct numerical solution of a periodic structure with varying number of inclusions under gradient loading. The proposed homogenization approach is an efficient and accurate alternative to current numerical techniques for the analysis of periodic materials experiencing strain gradients regardless of microstructural scale, inclusion shape and number, demonstrated by analyzing arrays characterized by elliptical and square inclusions and multi-inclusion unit cells.

MSC:

74S10 Finite volume methods applied to problems in solid mechanics
74Q05 Homogenization in equilibrium problems of solid mechanics
74E30 Composite and mixture properties
74M25 Micromechanics of solids

Citations:

Zbl 1523.74165
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allaire, G., Shape Optimization by the Homogenization Method (2002), Springer-Verlag: Springer-Verlag Berlin-Heidelberg-New York · Zbl 0990.35001
[2] Ameen, M. M.; Peerlings, R. H.J.; Geers, M. G.D., A quantitative assessment of the scale separation limits of classical and higher-order asymptotic homogenization, Eur. J. Mech. Solid., 71, 89-100 (2018) · Zbl 1406.74553
[3] Andrianov, I. V.; Awrejcewicz, J.; Danishevskyy, V. V., Asymptotical Mechanics of Composites Modelling Composites without FEM (2018), Springer · Zbl 1383.74001
[4] Bakhvalov, N.; Panasenko, G., Homogenisation: Averaging Processes in Periodic Media (1989), Springer: Springer Netherlands · Zbl 0692.73012
[5] Bansal, Y.; Pindera, M.-J., Finite-volume direct averaging micromechanics of heterogeneous materials with elastic-plastic phases, Int. J. Plast., 22, 5, 775-825 (2006) · Zbl 1177.74065
[6] Bensoussan, A.; Lions, J.-L.; Papanicolaou, G., Asymptotic Analysis for Periodic Structures (1978), North Holland: North Holland Amsterdam · Zbl 0411.60078
[7] Boutin, C., Microstructural effects in elastic composites, Int. J. Solid Struct., 33, 1023-1051 (1996) · Zbl 0920.73282
[8] Cao, L., Iterated two-scale asymptotic method and numerical algorithm for the elastic structures of composite materials, Comput. Methods Appl. Mech. Eng., 194, 2899-2926 (2005) · Zbl 1091.74041
[9] Cardiff, P.; Demirdžić, I., Thirty Years of the Finite Volume Method for Solid Mechanics (2018), arXiv preprint arXiv:1810.02105
[10] Cavalcante, M. A.A.; Marques, S. P.C.; Pindera, M.-J., Parametric formulation of the finite-volume theory for functionally graded materials — Part I: Analysis, J. Appl. Mech., 74, 935-945 (2007)
[11] Cavalcante, M. A.A.; Marques, S. P.C.; Pindera, M.-J., Computational aspects of the parametric finite-volume theory for functionally graded materials, Comput. Mater. Sci., 44, 422-438 (2008)
[12] Cavalcante, M. A.A.; Pindera, M.-J., Generalized FVDAM theory for periodic materials undergoing finite deformations — Part I: Framework, J. Appl. Mech., 81, 1-10 (2014), 021005
[13] Charalambakis, N., Homogenization techniques and micromechanics. A survey and perspectives, Appl. Mech. Rev., 63, 1-10 (2010), 0308031
[14] Cosserat, E.; Cosserat, F., Théorie des corps déformables (1909), Hermanns: Hermanns Paris · JFM 40.0862.02
[15] Drago, A. S.; Pindera, M.-J., A locally exact homogenization theory for periodic microstructures with isotropic phases, J. Appl. Mech., 75, 5, 1-14 (2008), 051010
[16] Dumontet, H., Study of a boundary layer problem in elastic composite materials, ESAIM-Math. Model. Num., 20, 2, 265-286 (1986) · Zbl 0602.73012
[17] van Dyke, M., Perturbation Methods in Fluid Mechanics (1964), Academic Press: Academic Press New York, 1964 · Zbl 0136.45001
[18] Fish, J.; Kuznetsov, S., Computational continua, Int. J. Numer. Methods Eng., 84, 774-802 (2010) · Zbl 1202.74199
[19] Fish, J.; Yang, Z.; Yuan, Z., A second-order reduced asymptotic homogenization approach for nonlinear periodic heterogeneous materials, Int. J. Numer. Methods Eng., 119, 469-489 (2019)
[20] Gao, Y.; Xing, Y.; Huang, Z.; Li, M.; Yang, Y., An assessment of multiscale asymptotic expansion method for linear static problems of periodic composite structures, Eur. J. Mech. /ASolids, 81, 1-18 (2020), 103951 · Zbl 1478.74028
[21] Gattu, M.; Khatam, H.; Drago, A. S.; Pindera, M.-J., Parametric finite-volume micromechanics of uniaxial continuously-reinforced periodic materials with elastic phases, J. Eng. Mater. Technol., 130, 1-15 (2008), 0310151
[22] Guinovart-Díaz, R.; Bravo-Castillero, J.; Rodríguez-Ramos, R.; Sabina, F. J., Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents - I. Elastic and hexagonal symmetry, J. Mech. Phys. Solid., 49, 1445-1462 (2001) · Zbl 1017.74055
[23] He, Z.; Pindera, M.-J., Locally exact asymptotic homogenization of periodic materials under anti-plane shear loading, Eur. J. Mech. Solid., 81, 1-15 (2020), 103972 · Zbl 1523.74165
[24] Kalamkarov, A. L.; Andrianov, I. V.; Danishevs’kyy, V. V., Asymptotic homogenization of composite materials and structures, Appl. Mech. Rev., 62, Article 030802 pp. (2009)
[25] Khatam, H.; Pindera, M.-J., Parametric finite-volume micromechanics of periodic materials with elastoplastic phases, Int. J. Plast., 25, 7, 1386-1411 (2009) · Zbl 1396.74040
[26] Kouznetsova, V. G.; Geers, M. G.D.; Brekelmans, W. A.M., Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy, Comput. Methods Appl. Mech. Eng., 193, 5525-5550 (2004) · Zbl 1112.74469
[27] Li, J.; Zhang, X. B., A numerical approach for the establishment of strain gradient constitutive relations in periodic heterogeneous materials, Eur. J. Mech. Solid., 41, 70-85 (2013) · Zbl 1406.74563
[28] Meguid, S. A.; Kalamkarov, A. L., Asymptotic homogenization of elastic composite materials with a regular structure, Int. J. Solid Struct., 31, 303-316 (1994) · Zbl 0791.73007
[29] Mindlin, R. D., Microstructure in linear elasticity, Arch. Ration. Mech. Anal., 16, 51-78 (1964) · Zbl 0119.40302
[30] Parnell, W. J.; Abrahams, I. D., Dynamic homogenization in periodic fibre reinforced media. Quasi-static limit for SH waves, Wave Motion, 43, 474-498 (2006) · Zbl 1231.74373
[31] Parnell, W. J.; Abrahams, I. D., Homogenization for wave propagation in periodic fibre-reinforced media with complex microstructure. I-Theory, J. Mech. Phys. Solid., 56, 2521-2540 (2008) · Zbl 1171.74409
[32] Peerlings, R. H.J.; Fleck, N. A., Computational evaluation of strain gradient elasticity constants, Int. J. Multiscale Comput. Eng., 2, 599-619 (2004)
[33] Pindera, M.-J.; Khatam, H.; Drago, A. S.; Bansal, Y., Micromechanics of spatially uniform heterogeneous media: a critical review and emerging approaches, Compos. Part B., 40, 349-378 (2009)
[34] Ramírez-Torres, A.; Penta, R.; Rodríguez-Ramos, R.; Grillo, A., Effective properties of hierarchical fiber-reinforced composites via a three-scale asymptotic homogenization approach, Math. Mech. Solid, 24, 3554-3574 (2019) · Zbl 07273382
[35] Ramírez-Torres, A.; Penta, R.; Rodríguez-Ramos, R.; Grillo, A.; Preziosi, L.; Merodio, J.; Guinovart-Díaz; Bravo-Castillero, J., Homogenized out-of-plane shear response of three-scale fiber-reinforced composites, Comput. Visual Sci., 20, 85-93 (2019) · Zbl 07704883
[36] Rodríguez-Ramos, R.; Sabina, F. J.; Guinovart-Díaz, R.; Bravo-Castillero, J., Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents - I. Elastic and square symmetry, Mech. Mater., 33, 223-235 (2001) · Zbl 1017.74055
[37] Sanchez-Palencia, E., Non-inhomogeneous Media and Vibration Theory (Lecture Notes in Physics, vol. 127 (1980), Springer-Verlag: Springer-Verlag Berlin · Zbl 0432.70002
[38] Smyshlyaev, V. P.; Cherednichenko, K. D., On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media, J. Mech. Phys. Solid., 48, 1325-1357 (2000) · Zbl 0984.74065
[39] Toupin, R., Elastic materials with couple-stresses, Arch. Ration. Mech. Anal., 11, 385-414 (1962) · Zbl 0112.16805
[40] Wang, G.; Pindera, M. J., Locally-exact homogenization theory for transversely isotropic unidirectional composites, Mech. Res. Commun., 78, 2-14 (2016)
[41] Yang, Z.; Cui, J.; Zhou, S., Thermo-mechanical analysis of periodic porous materials with microscale heat transfer by multiscale asymptotic expansion method, Int. J. Heat Mass Tran., 92, 904-919 (2016)
[42] Yu, X. G.; Cui, J. Z., The prediction on mechanical properties of 4-step braided composites via two-scale method, Compos. Sci. Technol., 67, 471-480 (2007)
[43] Yu, W.; Tang, T., Variational asymptotic method for unit cell homogenization of periodically heterogeneous materials, Int. J. Solid Struct., 44, 3738-3755 (2007) · Zbl 1144.74033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.