×

High order explicit exponential Runge-Kutta methods for semilinear delay differential equations. (English) Zbl 1458.65071

Summary: This paper aims to analyze order conditions of high order explicit exponential Runge-Kutta methods for stiff semilinear delay differential equations. Under the framework of analytic semigroup and the natural assumptions on the delay differential equations, the stiff order conditions up to order five are derived. Further, we show the method is stiffly convergent of order \(p\) even if the order conditions of order \(p\) holding in a weak form. Numerical tests are carried out to demonstrate the superiority of high order methods.

MSC:

65L03 Numerical methods for functional-differential equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bocharov, G. A.; Rihan, F. A., Numerical modelling in biosciences using delay differential equations, J. Comput. Appl. Math., 125, 1-2, 183-199 (2000) · Zbl 0969.65124
[2] Martin, A.; Ruan, S., Predator-prey models with delay and prey harvesting, J. Math. Biol., 43, 3, 247-267 (2001) · Zbl 1008.34066
[3] Gourley, S. A.; Kuang, Y., A delay reaction-diffusion model of the spread of bacteriophage infection, SIAM J. Appl. Math., 65, 2, 550-566 (2004) · Zbl 1068.92042
[4] Bellen, A.; Zennaro, M., Numerical Methods for Delay Differential Equations (2003), Oxford University Press: Oxford University Press New York · Zbl 0749.65042
[5] Frank, R.; Schneid, J.; Ueberhuber, C. W., The concept of B-convergence, SIAM J. Numer. Anal., 18, 5, 753-780 (1981) · Zbl 0467.65032
[6] Li, S., B-Theory of Runge-Kutta methods for stiff Volterra functional differential equations, Sci. China A, 46, 5, 662-674 (2003) · Zbl 1085.65062
[7] Zhang, C.; Zhou, S., Nonlinear stability and D-convergence of Runge-Kutta methods for delay differential equations, J. Comput. Appl. Math., 85, 2, 225-237 (1997) · Zbl 0904.65082
[8] Zhang, C.; Zhou, S.; Liao, X., D-Convergence and GDN-stability of Runge-Kutta methods for a class of delay systems, Appl. Numer. Math., 37, 161-170 (2001) · Zbl 0976.65072
[9] Huang, C.; Fu, H.; Li, S.; Chen, G., D-convergence of Runge-Kutta Methods for stiff delay differential equations, J. Comput. Math., 19, 3, 259-268 (2001) · Zbl 0986.65073
[10] Huang, C.; Chen, G.; Li, S.; Fu, H., D-Convergence of general linear methods for stiff delay differential equations, Comput. Math. Appl., 41, 41, 627-639 (2001) · Zbl 0989.65079
[11] Huang, C.; Li, S.; Fu, H.; Chen, G., D-convergence of one-leg methods for stiff delay differential equations, J. Comput. Math., 19, 601-606 (2001) · Zbl 1007.65054
[12] Maset, S.; Zennaro, M., Good behavior with respect to the stiffness in the numerical integration of retarded functional differential equations, SIAM J. Numer. Anal., 52, 4, 1843-1866 (2014) · Zbl 1310.65077
[13] Minchev, B.; Wright, W., A Review of Exponential Integrators for First Order Semi-Linear Problems, Vol. 2Technical Report, 1-44 (2005), Norwegian University of Science and Technology
[14] Hochbruck, M.; Ostermann, A., Exponential integrators, Acta Numer., 19, 1, 209-286 (2010) · Zbl 1242.65109
[15] Hochbruck, M.; Ostermann, A., Explicit exponential Runge-Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal., 43, 3, 1069-1090 (2005) · Zbl 1093.65052
[16] Luan, V. T.; Ostermann, A., Exponential B-series: The stiff case, SIAM J. Numer. Anal., 51, 6, 3431-3445 (2013) · Zbl 1285.65043
[17] Hochbruck, M.; Ostermann, A., Exponential multistep methods of Adams-type, BIT, 51, 4, 889-908 (2011) · Zbl 1237.65071
[18] Hochbruck, M.; Ostermann, A.; Schweitzer, J., Exponential Rosenbrock-type methods, SIAM J. Numer. Anal., 47, 1, 786-803 (2009) · Zbl 1193.65119
[19] Luan, V. T.; Ostermann, A., Exponential Rosenbrock methods of order five-construction, analysis and numerical comparisons, J. Comput. Appl. Math., 255, 417-431 (2014) · Zbl 1291.65201
[20] Luan, V. T.; Ostermann, A., Parallel exponential Rosenbrock methods, Comput. Math. Appl., 71, 5, 1137-1150 (2016) · Zbl 1443.65093
[21] Ostermann, A.; Thalhammer, M.; Wright, W., A class of explicit exponential general linear methods, BIT, 46, 2, 409-431 (2006) · Zbl 1103.65061
[22] Maset, S.; Zennaro, M., Unconditional stability of explicit exponential Runge-Kutta methods for semi-linear ordinary differential equations, Math. Comp., 78, 266, 957-967 (2009) · Zbl 1198.65127
[23] Maset, S.; Zennaro, M., Stability properties of explicit exponential Runge-Kutta methods, IMA J. Numer. Anal., 33, 1, 111-135 (2013) · Zbl 1271.65117
[24] Zhao, J.; Zhan, R.; Ostermann, A., Stability analysis of explicit exponential integrators for delay differential equations, Appl. Numer. Math., 109, 96-108 (2016) · Zbl 1348.65113
[25] Zhao, J.; Zhan, R.; Xu, Y., D-convergence and conditional GDN-stability of exponential Runge-Kutta methods for semilinear delay differential equations, Appl. Math. Comput., 339, 45-58 (2018) · Zbl 1429.65138
[26] Luan, V. T.; Ostermann, A., Stiff order conditions for exponential Runge-Kutta methods of order five, (Bock, H.; Hoang, X.; Rannacher, R.; Schlöder, J., Modeling, Simulation and Optimization of Complex Processes. Modeling, Simulation and Optimization of Complex Processes, HPSC 2012 (2012), Springer: Springer Cham), 133-143
[27] Luan, V. T.; Ostermann, A., Explicit exponential Runge-Kutta methods of high order for parabolic problems, J. Comput. Appl. Math., 256, 168-179 (2014) · Zbl 1314.65103
[28] Wu, J., Theory and Applications of Partial Functional Differential Equations (1996), Springer-Verlag: Springer-Verlag New York · Zbl 0870.35116
[29] Chan, W.; Green, D., Stability and bifurcation in delay diffusion models, Differ. Equ. Dyn. Syst., 1, 87-100 (1993) · Zbl 0877.35015
[30] Turyn, L., A partial functional differential equation, J. Math. Anal. Appl., 263, 1-13 (2001) · Zbl 1064.35203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.