×

Modelling the flow within forests: the canopy-related terms in the Reynolds-averaged formulation. (English) Zbl 1461.76538

Summary: The canopy-related terms in the transport equations for momentum, Reynolds stresses, turbulent kinetic energy and its dissipation rate were described by a perturbative expansion around a velocity scale based on the mean total kinetic energy. The quality of the series and the relative magnitude of the first orders were analysed through comparison with the results of large-eddy simulation of three canopy flows representative of real-life applications. The flows in question were those over a horizontally homogeneous forest, a sequence of forest stands and clearings, and a forested hill. The analysis gave both the highest order required for an accurate evaluation of the canopy effects and a mathematical formulation for the canopy-related terms in a Reynolds-averaged Navier-Stokes formulation. This offers a sounder basis and assured consistency for the turbulence modelling of canopy flows between Reynolds-averaged Navier-Stokes and large-eddy simulation frameworks.

MSC:

76U60 Geophysical flows
76D05 Navier-Stokes equations for incompressible viscous fluids
76Fxx Turbulence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abiven, C., Palma, J. M. L. M. & Brady, O.2011High-frequency field measurements and time-dependent computational modelling for wind turbine siting. J. Wind Engng Ind. Aerodyn.99 (2-3), 123-129.
[2] Ayotte, K. W., Finnigan, J. J. & Raupach, M. R.1999A second-order closure for neutrally stratified vegetative canopy flows. Boundary-Layer Meteorol.90, 189-216.
[3] Belcher, S. E., Finnigan, J. J. & Harman, I. N.2008Flows through forest canopies in complex terrain. Ecol. Appl.18 (6), 1436-1453.
[4] Belcher, S. E., Harman, I. N. & Finnigan, J. J.2012The wind in the willows: flows in forest canopies in complex terrain. Annu. Rev. Fluid Mech.44 (1), 479-504. · Zbl 1364.76072
[5] Belcher, S. E., Jerram, N. & Hunt, J. C. R.2003Adjustment of a turbulent boundary layer to a canopy of roughness elements. J. Fluid Mech.488, 369-398. · Zbl 1063.76573
[6] Blackman, K., Perret, L., Calmet, I. & Rivet, C.2017Turbulent kinetic energy budget in the boundary layer developing over an urban-like rough wall using PIV. Phys. Fluids29 (8), 085113-1-085113-19.
[7] Bohrer, G., Katul, G. G., Walko, R. L. & Avissar, R.2009Exploring the effects of microscale structural heterogeneity of forest canopies using large-eddy simulations. Boundary-Layer Meteorol.132 (3), 351-382.
[8] Bou-Zeid, E., Overney, J., Rogers, B. & Parlange, M.2009The effects of building representation and clustering in large-eddy simulations of flows in urban canopies. Boundary-Layer Meteorol.132 (3), 415-436.
[9] Boudreault, L.-É., Dupont, S., Bechmann, A. & Dellwik, E.2017How forest inhomogeneities affect the edge flow. Boundary-Layer Meteorol.162 (3), 375-400.
[10] Brunet, Y.2020Turbulent flow in plant canopies: historical perspective and overview. Boundary-Layer Meteorol.177 (2), 315-364.
[11] Castro, I. P., Cheng, H. & Reynolds, R.2006Turbulence over urban-type roughness: deductions from wind-tunnel measurements. Boundary-Layer Meteorol.118 (1), 109-131.
[12] Cava, D. & Katul, G. G.2008Spectral short-circuiting and wake production within the canopy trunk space of an alpine hardwood forest. Boundary-Layer Meteorol.126 (3), 415-431.
[13] Cescatti, A. & Marcolla, B.2004Drag coefficient and turbulence intensity in conifer canopies. Agric. Forest Meteorol.121 (3), 197-206.
[14] Chatziefstratiou, E. K., Velissariou, V. & Bohrer, G.2014Resolving the effects of aperture and volume restriction of the flow by semi-porous barriers using large-eddy simulations. Boundary-Layer Meteorol.152 (3), 329-348.
[15] Costa, J. C. L., Castro, F. A., Palma, J. M. L. M. & Stuart, P.2006Computer simulation of atmospheric flows over real forests for wind energy resource evaluation. J. Wind Engng Ind. Aerodyn.94, 603-620.
[16] Dalpé, B. & Masson, C.2008Numerical study of fully developed turbulent flow within and above a dense forest. Wind Energy11 (5), 503-515.
[17] Dupont, S. & Brunet, Y.2008Influence of foliar density profile on canopy flow: a large-eddy simulation study. Agric. Forest Meteorol.148 (6-7), 976-990.
[18] Dupont, S. & Brunet, Y.2009Coherent structures in canopy edge flow: a large-eddy simulation study. J. Fluid Mech.630, 93-128. · Zbl 1181.76089
[19] Dupont, S., Brunet, Y. & Finnigan, J. J.2008Large-eddy simulation of turbulent flow over a forested hill: validation and coherent structure identification. Q. J. R. Meteorol. Soc.134 (636), 1911-1929.
[20] Dwyer, M. J., Patton, E. G. & Shaw, R. H.1997Turbulent kinetic energy budgets from a large-eddy simulation of airflow above and within a forest canopy. Boundary-Layer Meteorol.84, 23-43.
[21] 2012 Forest Resources Assessment 2015: Terms and Definitions. Forest Resources Assessment Working Paper - 180 p. 36.
[22] 2016Global forest resources assessment 2015: how are the world’s forests changing? OCLC: 1003587002.
[23] Finnigan, J. J.2000Turbulence in plant canopies. Annu. Rev. Fluid Mech.32, 519-571. · Zbl 0992.76040
[24] Finnigan, J. J. & Shaw, R. H.2008Double-averaging methodology and its application to turbulent flow in and above vegetation canopies. Acta Geophys.56 (3), 534-561.
[25] Foudhil, H., Brunet, Y. & Caltagirone, J.-P.2005A fine-scale \(k-\varepsilon\) model for atmospheric flow over heterogeneous landscapes. Environ. Fluid Mech.5 (3), 247-265.
[26] Green, R. S.1992Modelling turbulent air flow in a stand of widely-spaced trees. Phoenics J.5, 294-312.
[27] Kanani, F., Träumner, K., Ruck, B. & Raasch, S.2014What determines the differences found in forest edge flow between physical models and atmospheric measurements? An LES study. Meteorol. Z.23 (1), 33-49.
[28] Kanda, M. & Hino, M.1994Organized structures in developing turbulent flow within and above a plant canopy, using a large eddy simulation. Boundary-Layer Meteorol.68 (3), 237-257.
[29] Katul, G. G., Mahrt, L., Poggi, D. & Sanz, C.2004One- and two-equation models for canopy turbulence. Boundary-Layer Meteorol.113, 81-109.
[30] King, A. T., Tinoco, R. O. & Cowen, E. A.2012A \(k-\varepsilon\) turbulence model based on the scales of vertical shear and stem wakes valid for emergent and submerged vegetated flows. J. Fluid Mech.701, 1-39. · Zbl 1248.76092
[31] Kobayashi, M. H., Pereira, J. C. F. & Siqueira, M. B. B.1994Numerical study of the turbulent flow over and in a model forest on a 2D hill. J. Wind Engng Ind. Aerodyn.53, 357-374.
[32] Krayenhoff, E. S., Santiago, J.-L., Martilli, A., Christen, A. & Oke, T. R.2015Parametrization of drag and turbulence for urban neighbourhoods with trees. Boundary-Layer Meteorol.156 (2), 157-189.
[33] Liang, L., Xiaofeng, L., Borong, L. & Yingxin, Z.2006Improved k-\( \epsilon\) two-equation turbulence model for canopy flow. Atmos. Environ.40 (4), 762-770.
[34] Lien, F.-S. & Yee, E.2004Numerical modelling of the turbulent flow developing within and over a 3-D building array. Part I: a high-resolution Reynolds-averaged Navier-Stokes approach. Boundary-Layer Meteorol.112 (3), 427-466.
[35] Lien, F.-S. & Yee, E.2005Numerical modelling of the turbulent flow developing within and over a 3-D building array. Part III: a distributed drag force approach, its implementation and application. Boundary-Layer Meteorol.114 (2), 287-313.
[36] Lien, F.-S., Yee, E. & Wilson, J. D.2005Numerical modelling of the turbulent flow developing within and over a 3-D building array. Part II: a mathematical foundation for a distributed drag force approach. Boundary-Layer Meteorol.114 (2), 245-285.
[37] Liu, J., Chen, J. M., Black, T. A. & Novak, M. D.1996E-\( \varepsilon\) modelling of turbulent air flow downwind of a model forest edge. Boundary-Layer Meteorol.77 (1), 21-44.
[38] López, F. & García, M. H.2001Mean flow and turbulence structure of open-channel flow through non-emergent vegetation. ASCE J. Hydraul. Engng127 (5), 392-402.
[39] Marusic, I., Kunkel, G. & Porté-Agel, F.2001Experimental study of wall boundary conditions for large-eddy simulation. J. Fluid Mech.446, 309-320. · Zbl 1107.76304
[40] Mason, P. J. & Thomson, D. J.1992Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech.242, 51-78. · Zbl 0765.76039
[41] Meneveau, C., Lund, T. S. & Cabot, W. H.1996A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech.319, 353-385. · Zbl 0882.76029
[42] Meyers, T. P. & Baldocchi, D. D.1991The budgets of turbulent kinetic energy and Reynolds stress within and above a deciduous forest. Agric. Forest Meteorol.53 (3), 207-222.
[43] Mochida, A., Tabata, Y., Iwata, T. & Yoshino, H.2008Examining tree canopy models for CFD prediction of wind environment at pedestrian level. J. Wind Engng Ind. Aerodyn.96 (10-11), 1667-1677.
[44] Neary, V. S.2003Numerical solution of fully developed flow with vegetative resistance. J. Engng Mech. ASCE129 (5), 558-563.
[45] Nebenführ, B. & Davidson, L.2015Large-eddy simulation study of thermally stratified canopy flow. Boundary-Layer Meteorol.156 (2), 253-276.
[46] Novak, M. D., Warland, J. S., Orchansky, A. L., Ketler, R. & Green, S.2000Wind tunnel and field measurements of turbulent flow in forests. Part I: uniformly thinned stands. Boundary-Layer Meteorol.95, 457-495.
[47] Pan, Y., Birdsey, R. A., Phillips, O. L. & Jackson, R. B.2013The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst.44 (1), 593-622.
[48] Patton, E. G., Horst, T. W., Sullivan, P. P., Lenschow, D. H., Oncley, S. P., Brown, W. O. J., Burns, S. P., Guenther, A. B., Held, A., Karl, T., et al.. 2011The canopy horizontal array turbulence study. Bull. Am. Meteorol. Soc.92 (5), 593-611.
[49] Patton, E. G., Shaw, R. H., Judd, M. J. & Raupach, M. R.1998Large-eddy simulations of windbreak flow. Boundary-Layer Meteorol.87, 275-306.
[50] Pinard, J. D. J.-P. & Wilson, J. D.2001First- and second-order closure models for wind in a plant canopy. J. Appl. Meteorol.40, 1762-1768.
[51] Poggi, D., Katul, G. G. & Vidakovic, B.2011The role of wake production on the scaling laws of scalar concentration fluctuation spectra inside dense canopies. Boundary-Layer Meteorol.139 (1), 83-95.
[52] Raupach, M. R. & Shaw, R. H.1982Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol.22 (1), 79-90.
[53] Raupach, M. R. & Thom, A. S.1981Turbulence in and above plant canopies. Annu. Rev. Fluid Mech.13, 97-129. · Zbl 0483.76073
[54] Raupach, M. R., Thom, A. S. & Edwards, I.1980A wind-tunnel study of turbulent flow close to regularly arrayed rough surfaces. Boundary-Layer Meteorol.18 (4), 373-397.
[55] Rosenfeld, M., Marom, G. & Bitan, A.2010Numerical simulation of the airflow across trees in a windbreak. Boundary-Layer Meteorol.135 (1), 89-107.
[56] Sagaut, P.2006Large eddy simulation for incompressible flows: an introduction, 3rd edn.Springer. · Zbl 1091.76001
[57] Sanz, C.2003A note on \(k - \varepsilon\) modelling of vegetation canopy air-flows. Boundary-Layer Meteorol.108 (1), 191-197.
[58] Sanz, C. & Katul, G. G.2007Dual length scale two-equation modelling of the canopy turbulent kinetic energy wake budget. C. R. Méc.335 (11), 685-690. · Zbl 1131.76029
[59] Schlegel, F., Stiller, J., Bienert, A., Maas, H.-G., Queck, R. & Bernhofer, C.2015Large-eddy simulation study of the effects on flow of a heterogeneous forest at sub-tree resolution. Boundary-Layer Meteorol.154 (1), 27-56.
[60] Schrottle, J. & Dornbrack, A.2013Turbulence structure in a diabatically heated forest canopy composed of fractal Pythagoras trees. Theor. Comput. Fluid Dyn.27 (3-4), 337-359.
[61] Shaw, R. H. & Patton, E. G.2003Canopy element influences on resolved- and subgrid-scale energy within a large-eddy simulation. Agric. Forest Meteorol.115 (1-2), 5-17.
[62] Shaw, R. H. & Schumann, U.1992Large-eddy simulation of turbulent flow above and within a forest. Boundary-Layer Meteorol.61, 47-64.
[63] Shen, S. & Leclerc, M. Y.1997Modelling the turbulence structure in the canopy layer. Agric. Forest Meteorol.87 (1), 3-25.
[64] Silva Lopes, A., Palma, J. M. L. M. & Castro, F. A.2007Simulation of the Askervein flow. Part 2: large-eddy simulations. Boundary-Layer Meteorol.125 (1), 85-108.
[65] Silva Lopes, A., Palma, J. M. L. M. & Piomelli, U.2015On the determination of effective aerodynamic roughness of surfaces with vegetation patches. Boundary-Layer Meteorol.156 (1), 113-130.
[66] Silva Lopes, A., Palma, J. M. L. M. & Viana Lopes, J.2013Improving a two-equation turbulence model for canopy flows using large-eddy simulation. Boundary-Layer Meteorol.149 (2), 231-257.
[67] Silva Lopes, A., Palma, J. M. L. M. & Viana Lopes, J.2016Modelling flows within forested areas using the \(k-\varepsilon\) RaNS model. J. Phys.: Conf. Ser.753 (8), 082035.
[68] Sogachev, A.2009A note on two-equation closure modelling of canopy flow. Boundary-Layer Meteorol.130 (3), 423-435.
[69] Sogachev, A., Kelly, M. & Leclerc, M. Y.2012Consistent two-equation closure modelling for atmospheric research: buoyancy and vegetation implementations. Boundary-Layer Meteorol.145 (2), 307-327.
[70] Sogachev, A., Menzhulin, G. V., Heimann, M. & Lloyd, J.2002A simple three-dimensional canopy – planetary boundary layer simulation model for scalar concentrations and fluxes. Tellus B54 (5), 784-819.
[71] Sogachev, A. & Panferov, O.2006Modification of two-equation models to account for plant drag. Boundary-Layer Meteorol.121 (2), 229-266.
[72] Su, H.-B., Shaw, R. H., Paw U, K. T., Moeng, C.-H. & Sullivan, P. P.1998Turbulent statistics of neutrally stratified flow within and above a sparse forest from large-eddy simulation and field observations. Boundary-Layer Meteorol.88, 363-397.
[73] Svensson, U. & Häggkvist, K.1990A two-equation turbulence model for canopy flows. J. Wind Engng Ind. Aerodyn.35, 201-211.
[74] Wilson, J. D.1988A second-order closure model for flow through vegetation. Boundary-Layer Meteorol.42 (4), 371-392.
[75] Wilson, J. D., Finnigan, J. J. & Raupach, M. R.1998A first-order closure for disturbed plant-canopy flows, and its application to winds in a canopy on a ridge. Q. J. R. Meteorol. Soc.124 (547), 705-732.
[76] Wilson, N. R. & Shaw, R. H.1977A higher order closure model for canopy flow. J. Appl. Meteorol.16 (11), 1197-1205.
[77] Yamada, T.1982A numerical model study of turbulent airflow in and above a forest canopy. J. Meteorol. Soc. Japan60 (1), 439-454.
[78] Yan, C., Huang, W.-X., Miao, S.-G., Cui, G.-X. & Zhang, Z.-S.2017Large-eddy simulation of flow over a vegetation-like canopy modelled as arrays of bluff-body elements. Boundary-Layer Meteorol.165 (2), 233-249.
[79] Yang, B., Morse, A. P., Shaw, R. H. & Paw U, K. T.2006Large-eddy simulation of turbulent flow across a forest edge. Part II: momentum and turbulent kinetic energy budgets. Boundary-Layer Meteorol.121 (3), 433-457.
[80] Yue, W., Meneveau, C., Parlange, M. B., Zhu, W., Kang, H. S. & Katz, J.2008Turbulent kinetic energy budgets in a model canopy: comparisons between LES and wind-tunnel experiments. Environ. Fluid Mech.8 (1), 73-95.
[81] Yue, W., Parlange, M., Meneveau, C., Zhu, W., Van Hout, R. & Katz, J.2007Large-eddy simulation of plant canopy flows using plant-scale representation. Boundary-Layer Meteorol.124 (2), 183-203.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.