×

zbMATH — the first resource for mathematics

Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions. (English) Zbl 0729.73209
Summary: A new finite element formulation aimed at the solution of problems involving strain localization is presented. The proposed formulation incorporates displacement interpolated embedded localization lines. Results are shown to converge to an ‘exact solution’ when the mesh is refined and also to be quite insensitive to mesh distortions.
Reviewer: Reviewer (Berlin)

MSC:
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Plasticity in Reinforced Concrete, McGraw-Hill, New York, 1982.
[2] ’Strain softening of concrete under multiaxial loading conditions’, Doctoral Thesis, Eindhoven University of Technology, The Netherlands, 1984.
[3] Bažant, J. Eng. Mech. Asce 110 pp 518– (1984)
[4] St. Pietruszczak, Int. J. Numer. Methods Eng. 17 pp 327– (1981)
[5] Ortiz, J. Comp. Methods Appl. Mech. Eng. 61 pp 189– (1987)
[6] Needleman, J. Appl. Mech. Asme 56 pp 1– (1989)
[7] Belytschko, J. Comp. Methods Appl. Mech. Eng. 70 pp 59– (1988)
[8] Bažant, J. Eng. Mech. Asce 114 pp 2013– (1988)
[9] Bažant, J. Eng. Mech. Div. Asce 102 pp 331– (1976)
[10] J. Eng. Mech. Div. Asce 103 pp 357– (1976)
[11] J. Eng. Mech. Div. Asce 104 pp 501–
[12] Ottosen, J. Eng. Mech. Asce 112 pp 1152– (1986)
[13] Bažant, Asme Appl. Mech. Rev. 39 pp 675– (1986)
[14] Bažant, Aci Mater. J. 84 pp 463– (1987)
[15] Pijaudier-Cabot, Eng. Comp. 5 pp 141– (1988)
[16] Rashid, Nucl. Eng. Des. 7 pp 334– (1968)
[17] Bažant, Rilem Mater. Struct. 16 pp 155– (1983)
[18] Bažant, J. Eng. Mech. Asce 110 pp 1015– (1984)
[19] Oliver, Int. J. Numer. Methods Eng. 28 pp 461– (1989)
[20] Hillerborg, Cement Concr. Res. 6 pp 773– (1976)
[21] and , ’Numerical modeling of discrete crack propagation in reinforced and plain concrete’, in and (eds.), Fracture Mechanics of Concrete: Structural Application and Numerical Calculation, Martinus Nijhoff, Dordrech, The Netherlands, 1985.
[22] and , ’Constitutive and computational aspects of strain softening and localization in solids’, in (eds.), Constitutive Equations: Macro and Computational Aspects, ASME, New York, 1984.
[23] A Course on Nonlinear Fracture Mechanics, The Technological University of Denmark, 1979.
[24] and , ’A constitutive relation for concrete’, in et al. (eds.), Proc. Ist Int. Conf. on Computational Plasticity, Pineridge Press, Swansea, U. K., 1987.
[25] Torrent, Cement Concr. Res. 17 pp 939– (1987)
[26] Dvorkin, Eng. Comp. 6 pp 281– (1989)
[27] Dvorkin, Eng. Comp. 1 pp 77– (1984)
[28] Bathe, Int. J. Numer. Methods Eng. 21 pp 367– (1985)
[29] Bathe, Int. J. Numer. Methods Eng. 22 pp 697– (1986)
[30] Dvorkin, Eng. Comp. 6 pp 217– (1989)
[31] Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1982.
[32] Taylor, Int. J. Numer. Methods Eng. 22 pp 39– (1986)
[33] and , ’Experience with the patch test for convergence of finite element’, in (ed.), The Mathematical Foundation of Finite Element Methods with Application to Partial Differential Equations, Academic Press, New York, 1972.
[34] Bažant, J. Struct. Eng. Asce 114 pp 2493– (1988)
[35] Pijaudier-Cabot, J. Eng. Mech. Asce 113 pp 1512– (1987)
[36] Variational Methods in Elasticity and Plasticity, 3rd edn, Pergamon Press, New York 1982.
[37] Bathe, Comp. Struct. 17 pp 871– (1983)
[38] Pande, Comp. Geotechnics 2 pp 89– (1986)
[39] and , ’Elasto-plastic analysis using a quadrilateral 2D element based on mixed interpolation of tensorial components’, in et al. (eds.), Proc. 2nd Int. Conf. on Computational Plasticity Pineridge Press, Swanasea, U. K., 1989.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.