×

A simplified finite difference method (SFDM) for EMHD Powell-Eyring nanofluid flow featuring variable thickness surface and variable fluid characteristics. (English) Zbl 1459.76092

Summary: We study constant and variable fluid properties together to investigate their effect on MHD Powell-Eyring nanofluid flow with thermal radiation and heat generation over a variable thickness sheet. The similarity variables assist in having ordinary differential equations acquired from partial differential equations (PDEs). A novel numerical procedure, the simplified finite difference method (SFDM), is developed to calculate the physical solution. The SFDM described here is simple, efficient, and accurate. To highlight its accuracy, results of the SFDM are compared with the literature. The results obtained from the SFDM are compared with the published results from the literature. This gives a good agreed solution with each other. The velocity, temperature, and concentration distributions, when drawn at the same time for constant and variable physical features, are observed to be affected against incremental values of the flow variables. Furthermore, the impact of contributing flow variables on the skin friction coefficient (drag on the wall) and local Nusselt (heat transfer rate on the wall) and Sherwood numbers (mass transfer on the wall) is illustrated by data distributed in tables. The nondimensional skin friction coefficient experiences higher values for constant flow regimes especially in comparison with changing flow features.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65N06 Finite difference methods for boundary value problems involving PDEs
76T20 Suspensions
76W05 Magnetohydrodynamics and electrohydrodynamics
76A05 Non-Newtonian fluids

Software:

bvp4c
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Daniel, Y. S.; Aziz, Z. A.; Ismail, Z.; Salah, F., Impact of thermal radiation on electrical MHD flow of nanofluid over nonlinear stretching sheet with variable thickness, Alexandria Engineering Journal, 57, 3, 2187-2197 (2018) · doi:10.1016/j.aej.2017.07.007
[2] Fang, T.; Zhang, J.; Zhong, Y., Boundary layer flow over a stretching sheet with variable thickness, Applied Mathematics and Computation, 218, 13, 7241-7252 (2012) · Zbl 1426.76124 · doi:10.1016/j.amc.2011.12.094
[3] Atif, S. M.; Hussain, S.; Sagheer, M., Magnetohydrodynamic stratified bioconvective flow of micropolar nanofluid due to gyrotactic microorganisms, AIP Advances, 9, 2 (2019) · doi:10.1063/1.5085742
[4] Alsaedi, A.; Khan, M. I.; Farooq, M.; Gull, N.; Hayat, T., Magnetohydrodynamic (MHD) stratified bioconvective flow of nanofluid due to gyrotactic microorganisms, Advanced Powder Technology, 28, 1, 288-298 (2017) · doi:10.1016/j.apt.2016.10.002
[5] Hayat, T.; Khan, M. I.; Waqas, M.; Alsaedi, A.; Yasmeen, T., Diffusion of chemically reactive species in third grade fluid flow over an exponentially stretching sheet considering magnetic field effects, Chinese Journal of Chemical Engineering, 25, 3, 257-263 (2017) · doi:10.1016/j.cjche.2016.06.008
[6] Khan, M. I.; Kiyani, M. Z.; Malik, M. Y.; Yasmeen, T.; Khan, M. W. A.; Abbas, T., Numerical investigation of magnetohydrodynamic stagnation point flow with variable properties, Alexandria Engineering Journal, 55, 3, 2367-2373 (2016) · doi:10.1016/j.aej.2016.04.037
[7] Hayat, T.; Khan, M. I.; Waqas, M.; Alsaedi, A.; Farooq, M., Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbon-water nanofluid, Computer Methods in Applied Mechanics and Engineering, 315, 1011-1024 (2017) · Zbl 1439.65083 · doi:10.1016/j.cma.2016.11.033
[8] Yasmeen, T.; Hayat, T.; Khan, M. I.; Imtiaz, M.; Alsaedi, A., Ferrofluid flow by a stretched surface in the presence of magnetic dipole and homogeneous-heterogeneous reactions, Journal of Molecular Liquids, 223, 1000-1005 (2016) · doi:10.1016/j.molliq.2016.09.028
[9] Hayat, T.; Khan, M. I.; Waqas, M.; Yasmeen, T.; Alsaedi, A., Viscous dissipation effect in flow of magnetonanofluid with variable properties, Journal of Molecular Liquids, 222, 47-54 (2016) · doi:10.1016/j.molliq.2016.06.096
[10] Hayat, T.; Khan, M. I.; Alsaedi, A.; Khan, M. I., Homogeneous-heterogeneous reactions and melting heat transfer effects in the MHD flow by a stretching surface with variable thickness, Journal of Molecular Liquids, 223, 960-968 (2016) · doi:10.1016/j.molliq.2016.09.019
[11] Hayat, T.; Khan, M. I.; Farooq, M.; Gull, N.; Alsaedi, A., Unsteady three-dimensional mixed convection flow with variable viscosity and thermal conductivity, Journal of Molecular Liquids, 223, 1297-1310 (2016) · doi:10.1016/j.molliq.2016.09.069
[12] Das, K.; Sharma, R. P.; Sarkar, A., Heat and mass transfer of a second grade magnetohydrodynamic fluid over a convectively heated stretching sheet, Journal of Computational Design and Engineering, 3, 4, 330-336 (2016) · doi:10.1016/j.jcde.2016.06.001
[13] Bhattacharyya, K.; Uddin, M. S.; Layek, G. C., Exact solution for thermal boundary layer in Casson fluid flow over permeable shrinking sheet with variable wall temperature and thermal radiation, Alexandria Engineering Journal, 55, 2, 1703-1712 (2016) · doi:10.1016/j.aej.2016.03.010
[14] Raju, R. S.; Jithender Reddy, G.; Rao, J. A.; Rashidi, M. M., Thermal diffusion and diffusion thermo effects on an unsteady heat and mass transfer magnetohydrodynamic natural convection Couette flow using FEM, Journal of Computational Design and Engineering, 3, 4, 349-362 (2016) · doi:10.1016/j.jcde.2016.06.003
[15] Farooq, M.; Anjum, A.; Hayat, T.; Alsaedi, A., Melting heat transfer in the flow over a variable thicked Riga plate with homogeneous-heterogeneous reactions, Journal of Molecular Liquids, 224, 1341-1347 (2016) · doi:10.1016/j.molliq.2016.10.123
[16] Kumar, A.; Sugunamma, V.; Sandeep, N.; JV, R. R., Impact of Brownian motion and thermophoresis on bioconvective flow of nanoliquids past a variable thickness surface with slip effects, Multidiscipline Modeling in Materials and Structures, 15, 1, 103-132 (2019)
[17] Anantha, K.; Ramadevi, B.; Sugunamma, V., Impact of Lorentz force on unsteady bio convective flow of Carreau fluid across a variable thickness sheet with non-Fourier heat flux model, Defect and Diffusion Forum (2018), Trans Tech Publications Ltd
[18] Kumar, K. A.; Reddy, J. R.; Sugunamma, V.; Sandeep, N., Magnetohydrodynamic Cattaneo-Christov flow past a cone and a wedge with variable heat source/sink, Alexandria Engineering Journal, 57, 1, 435-443 (2018)
[19] Daniel, Y. S.; Aziz, Z. A.; Ismail, Z.; Salah, F., Effects of slip and convective conditions on MHD flow of nanofluid over a porous nonlinear stretching/shrinking sheet, Australian Journal of Mechanical Engineering, 16, 3, 213-229 (2018)
[20] Salahuddin, T.; Malik, M. Y.; Hussain, A.; Bilal, S.; Awais, M., MHD flow of Cattanneo-Christov heat flux model for Williamson fluid over a stretching sheet with variable thickness: using numerical approach, Journal of Magnetism and Magnetic Materials, 401, 991-997 (2016) · doi:10.1016/j.jmmm.2015.11.022
[21] Reddy, S.; Naikoti, K.; Rashidi, M. M., MHD flow and heat transfer characteristics of Williamson nanofluid over a stretching sheet with variable thickness and variable thermal conductivity, Transactions of A. Razmadze Mathematical Institute, 171, 2, 195-211 (2017) · Zbl 1393.76141
[22] Malik, M. Y.; Khan, M.; Salahuddin, T.; Khan, I., Variable viscosity and MHD flow in Casson fluid with Cattaneo-Christov heat flux model: using Keller box method, Engineering Science and Technology, an International Journal, 19, 4, 1985-1992 (2016) · doi:10.1016/j.jestch.2016.06.008
[23] Ramesh, G. K.; Prasannakumara, B. C.; Gireesha, B. J.; Rashidi, M. M., Casson fluid flow near the stagnation point over a stretching sheet with variable thickness and radiation, Journal of Applied Fluid Mechanics, 9, 3, 1115-1022 (2016) · doi:10.18869/acadpub.jafm.68.228.24584
[24] Makinde, O. D.; Mabood, F.; Khan, W. A.; Tshehla, M. S., MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat, Journal of Molecular Liquids, 219, 624-630 (2016) · doi:10.1016/j.molliq.2016.03.078
[25] Prasad, K. V.; Vajravelu, K.; Vaidya, H.; Van Gorder, R. A., MHD flow and heat transfer in a nanofluid over a slender elastic sheet with variable thickness, Results in Physics, 7, 1462-1474 (2017) · doi:10.1016/j.rinp.2017.03.022
[26] Turkyilmazoglu, M., Thermal radiation effects on the time-dependent MHD permeable flow having variable viscosity, International Journal of Thermal Sciences, 50, 1, 88-96 (2011) · doi:10.1016/j.ijthermalsci.2010.08.016
[27] Prasad, K. V.; Sujatha, A.; Vajravelu, K.; Pop, I., MHD flow and heat transfer of a UCM fluid over a stretching surface with variable thermophysical properties, Meccanica, 47, 6, 1425-1439 (2012) · Zbl 1293.76177 · doi:10.1007/s11012-011-9526-x
[28] Vajravelu, K.; Prasad, K. V.; Ng, C.-O., Unsteady convective boundary layer flow of a viscous fluid at a vertical surface with variable fluid properties, Nonlinear Analysis: Real World Applications, 14, 1, 455-464 (2013) · doi:10.1016/j.nonrwa.2012.07.008
[29] Das, K., Impact of thermal radiation on MHD slip flow over a flat plate with variable fluid properties, Heat and Mass Transfer, 48, 5, 767-778 (2012) · doi:10.1007/s00231-011-0924-3
[30] Mukhopadhyay, S., Effects of thermal radiation and variable fluid viscosity on stagnation point flow past a porous stretching sheet, Meccanica, 48, 7, 1717-1730 (2013) · Zbl 1293.76067 · doi:10.1007/s11012-013-9704-0
[31] Rahman, M. M.; Eltayeb, I. A., Convective slip flow of rarefied fluids over a wedge with thermal jump and variable transport properties, International Journal of Thermal Sciences, 50, 4, 468-479 (2011) · doi:10.1016/j.ijthermalsci.2010.10.020
[32] Hayat, T.; Farooq, M.; Alsaedi, A.; Iqbal, Z., Melting heat transfer in the stagnation point flow of Powell-Eyring fluid, Journal of Thermophysics and Heat Transfer, 27, 4, 761-766 (2013) · doi:10.2514/1.t4059
[33] Jalil, M.; Asghar, S., Flow and heat transfer of Powell-Eyring fluid over a stretching surface: a lie group analysis, Journal of Fluids Engineering, 135, 12 (2013) · doi:10.1115/1.4025097
[34] Mushtaq, A.; Mustafa, M.; Hayat, T.; Rahi, M.; Alsaedi, A., Exponentially stretching sheet in a Powell-Eyring Fluid: numerical and series solutions, Zeitschrift für Naturforschung A, 68, 12, 791-798 (2013) · doi:10.5560/zna.2013-0063
[35] Javed, T.; Ali, N.; Abbas, Z.; Sajid, M., Flow of an Eyring-Powell non-Newtonian fluid over a stretching sheet, Chemical Engineering Communications, 200, 3, 327-336 (2013) · doi:10.1080/00986445.2012.703151
[36] Mustafa, M.; Nawaz, M.; Hayat, T.; Alsaedi, A., MHD boundary layer flow of second-grade nanofluid over a stretching sheet with convective boundary conditions, Journal of Aerospace Engineering, 27, 4 (2014) · doi:10.1061/(asce)as.1943-5525.0000314
[37] Motsumi, T. G.; Makinde, O. D., Effects of thermal radiation and viscous dissipation on boundary layer flow of nanofluids over a permeable moving flat plate, Physica Scripta, 86, 4 (2012) · Zbl 1263.76027 · doi:10.1088/0031-8949/86/04/045003
[38] White, F. M., Fluid Mechanics (2003), New York, NY, USA: McGraw-Hill, New York, NY, USA
[39] Andersson, H. I.; Aarseth, J. B., Sakiadis flow with variable fluid properties revisited, International Journal of Engineering Science, 45, 2-8, 554-561 (2007) · Zbl 1213.76062 · doi:10.1016/j.ijengsci.2007.04.012
[40] Rehman, K. U.; Saba, N. U.; Malik, M. Y.; Zehra, I., Nanoparticles individualities in both Newtonian and Casson fluid models by way of stratified media: a numerical analysis, The European Physical Journal E, 41, 3, 1-10 (2018)
[41] Ali, U.; Rehman, K. U.; Malik, M. Y., The influence of MHD and heat generation/absorption in a Newtonian flow field manifested with a Cattaneo-Christov heat flux model, Physica Scripta, 94, 8 (2019) · doi:10.1088/1402-4896/ab11ff
[42] Rehman, K. U.; Malik, M. Y.; Zehra, I.; Alqarni, M. S., Group theoretical analysis for MHD flow fields: a numerical result, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 3, 156 (2019) · doi:10.1007/s40430-019-1662-6
[43] Malik, M. Y., Application of shooting method on MHD thermally stratified mixed convection flow of non-Newtonian fluid over an inclined stretching cylinder, Journal of Physics: Conference Series, 822, 1 (2017)
[44] Rehman, K. U.; Al-Mdallal, Q. M.; Malik, M. Y., Symmetry analysis on thermally magnetized fluid flow regime with heat source/sink, Case Studies in Thermal Engineering, 14 (2019) · doi:10.1016/j.csite.2019.100452
[45] Irfan, M.; Farooq, M. A.; Iqra, T., A new computational technique design for EMHD nanofluid flow over a variable thickness surface with variable liquid characteristics, Frontiers in Physics, 8, 1-14 (2020) · doi:10.3389/fphy.2020.00066
[46] Na, T. Y., Computational Methods in Engineering Boundary Value Problems (1980), Cambridge, MA, USA: Academic Press, Cambridge, MA, USA · Zbl 0456.76002
[47] Thomas, L., Elliptic Problems in Linear Differential Equations over a Network: Watson scientific Computing Laboratory (1949), New York, NY, USA: Columbia University, New York, NY, USA
[48] Kierzenka, J.; Shampine, L. F., A BVP solver based on residual control and the Maltab PSE, ACM Transactions on Mathematical Software, 27, 3, 299-316 (2001) · Zbl 1070.65555 · doi:10.1145/502800.502801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.