×

Generalized Poisson-Lindley linear model for count data. (English) Zbl 1516.62666

Summary: The purpose of this paper is to develop a new linear regression model for count data, namely generalized-Poisson Lindley (GPL) linear model. The GPL linear model is performed by applying generalized linear model to GPL distribution. The model parameters are estimated by the maximum likelihood estimation. We utilize the GPL linear model to fit two real data sets and compare it with the Poisson, negative binomial (NB) and Poisson-weighted exponential (P-WE) models for count data. It is found that the GPL linear model can fit over-dispersed count data, and it shows the highest log-likelihood, the smallest AIC and BIC values. As a consequence, the linear regression model from the GPL distribution is a valuable alternative model to the Poisson, NB, and P-WE models.

MSC:

62-XX Statistics

Software:

R; GWRM; COUNT
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A.C. Cameron and P.K. Trivedi, Regression Analysis of Count Data, Cambridge University Press, Cambridge, 1998. · Zbl 0924.62004 · doi:10.1017/CBO9780511814365
[2] A.C. Cameron and P.K. Trivedi, Regression Analysis of Count Data, 2nd ed., Cambridge University Press, Cambridge, 2013. · Zbl 1301.62003 · doi:10.1017/CBO9781139013567
[3] L. Cheng, S.R. Geedipally, and D. Lord, The Poisson-Weibull generalized linear model for analyzing motor vehicle crash data, Safety Sci. 54 (2013), pp. 38-42. doi: 10.1016/j.ssci.2012.11.002 · doi:10.1016/j.ssci.2012.11.002
[4] P. Deb and P.K. Trivedi, Demand for medical care by the elderly: A finite mixture approach, J. Appl. Econometrics 12 (1997), pp. 313-336. Special Issue: Econometric Models. doi: 10.1002/(SICI)1099-1255(199705)12:3<313::AID-JAE440>3.0.CO;2-G · doi:10.1002/(SICI)1099-1255(199705)12:3<313::AID-JAE440>3.0.CO;2-G
[5] E.G. Déniz, A new discrete distribution: Properties and applications in medical care, J. Appl. Stat. 40 (2013), pp. 2760-2770. doi: 10.1080/02664763.2013.827161. · Zbl 1514.62522
[6] D.E. Giles, Hermite regression analysis of multi-modal count data, Tech. Rep., Econometrics Working Paper EWP1001, Department of Economics, University of Victoria, Canada, 2010.
[7] J.M. Hilbe, Negative Binomial Regression, 2nd ed., Cambridge University Press, Cambridge, 2011. · Zbl 1269.62063 · doi:10.1017/CBO9780511973420
[8] N.L. Johnson, A.W. Kemp, and S. Kotz, Univariate Discrete Distributions, 3rd ed., Wiley Series in Probability and Statistics, John Willey & Sons, Inc., Hoboken, 2005. · Zbl 1092.62010 · doi:10.1002/0471715816
[9] D. Karlis and E. Xekalaki, Mixed Poisson distributions, Int. Statist. Rev. 73 (2005), pp. 35-58. doi: 10.1111/j.1751-5823.2005.tb00250.x · Zbl 1104.62010 · doi:10.1111/j.1751-5823.2005.tb00250.x
[10] D. Lord and S.R. Geedipally, The negative binomial-Lindley distribution as a tool for analyzing crash data characterized by a large amount of zeros, Accid. Anal. Prev. 43 (2011), pp. 1738-1742. doi: 10.1016/j.aap.2011.04.004 · doi:10.1016/j.aap.2011.04.004
[11] E. Mahmoudi and H. Zakerzadeh, Generalized Poisson - Lindley distribution, Comm. Statist. Theory Methods 39 (2010), pp. 1785-1798. doi: 10.1080/03610920902898514 · Zbl 1197.60007
[12] P. McCullagh and J. Nelder, Generalized Linear Models, 2nd ed., Chapman and Hall/CRC, Washington, DC, 1989. · Zbl 0588.62104 · doi:10.1007/978-1-4899-3242-6
[13] J.C. Nash, On best practice optimization methods in R, J. Stat. Softw. 60 (2014), pp. 1-14. Available at http://www.jstatsoft.org/v60/i02. doi: 10.18637/jss.v060.i02 · doi:10.18637/jss.v060.i02
[14] E. Ohlsson and B. Johansson, Non-Life Insurance Pricing with Generalized Linear Models, EAA Series, Springer, Berlin, 2010. · Zbl 1194.91011 · doi:10.1007/978-3-642-10791-7
[15] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2014. Available at http://www.R-project.org.
[16] J. Rodríguez-Avi, A. Conde-Sánchez, A.J. Sáez-Castillo, M.J. Olmo-Jiménez, and A.M. Martínez-Rodríguez, A generalized Waring regression model for count data, Comput. Statist. Data Anal. 53 (2009), pp. 3717-3725. doi: 10.1016/j.csda.2009.03.013 · Zbl 1453.62184 · doi:10.1016/j.csda.2009.03.013
[17] A.J. Sáez-Castillo and A. Conde-Sánchez, A hyper-Poisson regression model for overdispersed and underdispersed count data, Comput. Statist. Data Anal. 61 (2013), pp. 148-157. doi: 10.1016/j.csda.2012.12.009 · Zbl 1348.62188 · doi:10.1016/j.csda.2012.12.009
[18] M. Sankaran, The discrete Poisson-Lindley distribution, Biometrics 26 (1970), pp. 145-149. doi: 10.2307/2529053 · doi:10.2307/2529053
[19] M.M. Shoukri, M.H. Asyali, R. VanDorp, and D. Kelton, The Poisson inverse Gaussian regression model in the analysis of clustered counts data, J. Data Sci. 2 (2004), pp. 17-32.
[20] R. Varadhan, Numerical optimization in R: Beyond optim, J. Stat. Softw. 60 (2014), pp. 1-3. Available at http://www.jstatsoft.org/v60/i01. doi: 10.18637/jss.v060.i01 · doi:10.18637/jss.v060.i01
[21] R. Winkelmann, Econometric Analysis of Count Data, 5th ed., Springer, Berlin, 2008.
[22] H. Zakerzadeh and A. Dolati, Generalized Lindley distribution, J. Math. Extension 3 (2009), pp. 13-25. · Zbl 1274.60047
[23] H. Zamani, N. Ismail, and P. Faroughi, Poisson-weighted exponential univariate version and regression model with applications, J. Math. Statist. 10 (2014), pp. 148-154. doi: 10.3844/jmssp.2014.148.154 · doi:10.3844/jmssp.2014.148.154
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.