zbMATH — the first resource for mathematics

On complex dynamics in a Purkinje and a ventricular cardiac cell model. (English) Zbl 07274914
Summary: Cardiac muscle cells can exhibit complex patterns including irregular behaviour such as chaos or (chaotic) early afterdepolarisations (EADs), which can lead to sudden cardiac death. Suitable mathematical models and their analysis help to predict the occurrence of such phenomena and to decode their mechanisms. The focus of this paper is the investigation of dynamics of cardiac muscle cells described by systems of ordinary differential equations. This is generically performed by studying a Purkinje cell model and a modified ventricular cell model. We find chaotic dynamics with respect to the leak current in the Purkinje cell model, and EADs and chaos with respect to a reduced fast potassium current and an enhanced calcium current in the ventricular cell model — features that have been experimentally observed and are known to exist in some models, but are new to the models under present consideration. We also investigate the related monodomain models of both systems to study synchronisation and the behaviour of the cells on macro-scale in connection with the discovered features. The models show qualitatively the same behaviour to what has been experimentally observed. However, for certain parameter settings the dynamics occur within a non-physiological range.
37N25 Dynamical systems in biology
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
35Q92 PDEs in connection with biology, chemistry and other natural sciences
65P30 Numerical bifurcation problems
92B05 General biology and biomathematics
Full Text: DOI
[1] Guckenheimer, J.; Holmes, P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied mathematical sciences, 42 (1990), Springer-Verlag, New York
[2] Kuznetsov, Y. A., Elements of applied bifurcation theory (1998), Springer-Verlag, New York · Zbl 0914.58025
[3] Shilnikov, L. P.; Shilnikov, A. L.; Turaev, D. V.; Chua, L. O., Methods of qualitative theory in nonlinear dynamics. Part I, vol. 4 (1998), World Scientific · Zbl 0941.34001
[4] Shilnikov, L. P.; Shilnikov, A. L.; Turaev, D. V.; Chua, L. O., Methods of qualitative theory in nonlinear dynamics. Part II, vol. 5 (2001), World Scientific · Zbl 1046.34003
[5] Wiggins, S., Introduction to applied nonlinear dynamical systems and chaos, Texts in applied mathematics, vol. 2 (2003), Springer-Verlag, New York · Zbl 1027.37002
[6] Muscle Excitation-Contraction Coupling: Elements and Integration.
[7] Sato, D.; Xie, L.-H.; Sovari, A. A.; Tran, D. X.; Morita, N.; Xie, F., Synchronization of chaotic early afterdepolarizations in the genesis of cardiac arrhythmias, Proc Natl Acad Sci (2009)
[8] Jæger, K. H.; Charwat, V.; Charrez, B.; Finsberg, H.; Maleckar, M. M.; Wall, S., Improved computational identification of drug response using optical measurements of human stem cell derived cardiomyocytes in microphysiological systems, Front Pharmacol, 10, 1648 (2020)
[9] Tveito, A.; Maleckar, M. M.; Lines, G. T., Computing optimal properties of drugs using mathematical models of single channel dynamics, Comput Math Biophys, 6, 1, 41-64 (2018) · Zbl 1412.92140
[10] Zhou, X.; Qu, Y.; Passini, E.; Bueno-Orovio, A.; Liu, Y.; Vargas, H. M., Blinded in silico drug trial reveals the minimum set of ion channels for torsades de pointes risk assessment, Front Pharmacol, 10, 1643 (2020)
[11] Kurata, Y.; Tsumoto, K.; Hayashi, K.; Hisatome, I.; Tanida, M.; Kuda, Y., Dynamical mechanisms of phase-2 early afterdepolarizations in human ventricular myocytes: insights from bifurcation analyses of two mathematical models, Am J Physiol Heart Circ Physiol, 312, 1, H106-H127 (2017)
[12] Tran, D. X.; Sato, D.; Yochelis, A.; Weiss, J. N.; Garfinkel, A.; Qu, Z., Bifurcation and chaos in a model of cardiac early afterdepolarizations, Phys Rev Lett, 102, 258103 (2009)
[13] Tsumoto, K.; Kurata, Y.; Furutani, K.; Kurachi, Y., Hysteretic dynamics of multi-stable early afterdepolarisations with repolarisation reserve attenuation: a potential dynamical mechanism for cardiac arrhythmias, Sci Rep, 7, 1, 10771 (2017)
[14] Xie, Y.; Izu, L. T.; Bers, D. M.; Sato, D., Arrhythmogenic transient dynamics in cardiac myocytes, Biophys J, 106, 4 (2014)
[15] Noble, D., A modification of the Hodgkin-Huxley equations applicable to purkinje fibre action and pacemaker potentials, J Physiol, 160, 317-352 (1962)
[16] Bernus, O.; Wilders, R.; Zemlin, C. W.; Verschelde, H.; Panfilov, A. V., A computationally efficient electrophysiological model of human ventricular cells, Am J Physiol Heart Circ Physiol, 282, 6, H2296-H2308 (2002)
[17] Zimik, S.; Vandersickel, N.; Nayak, A. R.; Panfilov, A. V.; Pandit, R., A comparative study of early afterdepolarization-mediated fibrillation in two mathematical models for human ventricular cells, PLoS ONE, 10 (2015)
[18] Keener, J.; Sneyd, J., Mathematical physiology. Vol. II: systems physiology, Interdisciplinary applied mathematics, 8 (2009), Springer, New York · Zbl 1273.92018
[19] Clayton, R. H., Influence of cardiac tissue anisotropy on re-entrant activation in computational models of ventricular fibrillation, Physica D, 238, 11, 951-961 (2009) · Zbl 1169.37306
[20] Keldermann, R.; Nash, M.; Panfilov, A., Modeling cardiac mechano-electrical feedback using reaction-diffusion-mechanics systems, Physica D, 238, 11, 1000-1007 (2009) · Zbl 1165.92006
[21] Clayton, R. H.; Bernus, O.; Cherry, E. M.; Dierckx, H.; Fenton, F. H.; Mirabella, L., Models of cardiac tissue electrophysiology: progress, challenges and open questions, Prog Biophys Mol Biol, 104, 1, 22-48 (2011)
[22] Fink, M.; Niederer, S. A.; Cherry, E. M.; Fenton, F. H.; Koivumäki, J. T.; Seemann, G., Cardiac cell modelling: observations from the heart of the cardiac physiome project, Prog Biophys Mol Biol, 104, 1, 2-21 (2011)
[23] Hodgkin, A. L.; Huxley, A. F., A quantitative description of membrane current and its application to conduction and excitation in nerve, J Physiol, 117, 4, 500-544 (1952)
[24] Luo, C.-H.; Rudy, Y., A model of the ventricular cardiac action potential. depolarization, repolarization, and their interaction, Circ Res, 68, 1501-1526 (1991)
[25] Fenton, F.; Karma, A., Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation, Chaos, 8, 1, 20-47 (1998) · Zbl 1069.92503
[26] ten Tusscher, K.; Noble, D.; Noble, P. J.; Panfilov, A. V., A model for human ventricular tissue, Am J Physiol Heart Circ Physiol, 286, 4, H1573-H1589 (2004)
[27] ten Tusscher, K. H.W. J.; Panfilov, A. V., Alternans and spiral breakup in a human ventricular tissue model, Am J Physiol Heart Circ Physiol, 291, 3, H1088-H1100 (2006)
[28] Bueno-Orovio, A.; Cherry, E. M.; Fenton, F. H., Minimal model for human ventricular action potentials in tissue, J Theor Biol, 253, 3, 544-560 (2008) · Zbl 1398.92052
[29] Priebe, L.; Beuckelmann, D. J., Simulation study of cellular electric properties in heart failure, Circ Res, 82, 11, 1206-1223 (1998)
[30] Desroches, M.; Guckenheimer, J.; Krauskopf, B.; Kuehn, C.; Osinga, H. M.; Wechselberger, M., Mixed-mode oscillations with multiple time scales, SIAM Rev, 54, 2, 211-288 (2012) · Zbl 1250.34001
[31] Erhardt, A. H., Early afterdepolarisations induced by an enhancement in the calcium current, Processes, 7, 1, 1-16 (2019)
[32] Glass, L.; Guevara, M. R.; Shrier, A.; Perez, R., Bifurcation and chaos in a periodically stimulated cardiac oscillator, Physica D, 7, 1, 89-101 (1983)
[33] Weiss, J. N.; Garfinkel, A.; Karagueuzian, H. S.; Chen, P.-S.; Qu, Z., Early afterdepolarizations and cardiac arrhythmias, Heart Rhythm, 7, 12, 1891-1899 (2010)
[34] de Lange, E.; Xie, Y.; Qu, Z., Synchronization of early afterdepolarizations and arrhythmogenesis in heterogeneous cardiac tissue models, Biophys J, 103, 2, 365-373 (2012)
[35] Kügler, P.; Bulelzai, M. A.K.; Erhardt, A. H., Period doubling cascades of limit cycles in cardiac action potential models as precursors to chaotic early afterdepolarizations, BMC Syst Biol, 11, 1 (2017)
[36] Roden, D. M.; Viswanathan, P. C., Genetics of acquired long qt syndromeg, J Clin Invest, 115, 8, 2025-2032 (2005)
[37] Nieuwenhuyse, E. V.; Seemann, G.; Panfilov, A. V.; Vandersickel, N., Effects of early afterdepolarizations on excitation patterns in an accurate model of the human ventricles, PLoS ONE, 12 (2017)
[38] Panfilov, A.; Dierckx, H.; Volpert, V., (invited) reaction diffusion waves in cardiovascular diseases, Physica D, 399, 1-34 (2019)
[39] Gomes, J. M.; dos Santos, R. W.; Cherry, E. M., Alternans promotion in cardiac electrophysiology models by delay differential equations, Chaos, 27, 9, 093915 (2017)
[40] Uzelac, I.; Ji, Y. C.; Hornung, D.; Schröder-Scheteling, J.; Luther, S.; Gray, R. A., Simultaneous quantification of spatially discordant alternans in voltage and intracellular calcium in langendorff-perfused rabbit hearts and inconsistencies with models of cardiac action potentials and ca transients, Front Physiol, 8, 819 (2017)
[41] Yu, P., Closed-form conditions of bifurcation points for general differential equations, Internat J Bifur Chaos Appl Sci Engrg, 15, 04, 1467-1483 (2005) · Zbl 1090.34034
[42] Sundnes, J.; Lines, G. T.; Nielsen, B. F.; Mardal, K.-A.; Tveito, A., Computing the electrical activity in the heart (2006), Springer · Zbl 1182.92020
[43] Nielsen, B. F.; Ruud, T. S.; Lines, G. T.; Tveito, A., Optimal monodomain approximations of the bidomain equations, Appl Math Comput, 184, 2, 276-290 (2007) · Zbl 1115.92005
[44] Coudière, Y.; Bourgault, Y.; Rioux, M., Optimal monodomain approximations of the bidomain equations used in cardiac electrophysiology, Math Models Methods Appl Sci, 24, 6, 1115-1140 (2014) · Zbl 1292.35148
[45] Li, X.; Jiang, W.; Shi, J., Hopf bifurcation and turing instability in the reaction-diffusion Holling-Tanner predator-prey model, IMA J Appl Math, 78, 2, 287-306 (2013) · Zbl 1267.35236
[46] Chen, X.; Jiang, W., Turing-Hopf bifurcation and multi-stable spatio-temporal patterns in the Lengyel-Epstein system, Nonlinear Anal Real World Appl, 49, 386-404 (2019) · Zbl 07146779
[47] Cao, X.; Jiang, W., Turing-Hopf bifurcation and spatiotemporal patterns in a diffusive predator-prey system with Crowley-Martin functional response, Nonlinear Anal Real World Appl, 43, 428-450 (2018) · Zbl 1394.35033
[48] Grebenkov, D. S.; Nguyen, B.-T., Geometrical structure of Laplacian eigenfunctions, SIAM Rev, 55, 4, 601-667 (2013) · Zbl 1290.35157
[49] Dhooge, A.; Govaerts, W.; Kuznetsov, Y. A., MATCONT: a matlab package for numerical bifurcation analysis of odes, ACM Trans Math Softw, 29, 2, 141-164 (2003) · Zbl 1070.65574
[50] Dhooge, A.; Govaerts, W.; Kuznetsov, Y. A.; Meijer, H. G.E.; Sautois, B., New features of the software MatCont for bifurcation analysis of dynamical systems, Math Comput Model Dyn Syst, 14, 2, 147-175 (2008) · Zbl 1158.34302
[51] Govaerts, W.; Kuznetsov, Y. A.; Dhooge, A., Numerical continuation of bifurcations of limit cycles in matlab, SIAM J Sci Comput, 27, 1, 231-252 (2005) · Zbl 1087.65118
[52] Erhardt, A. H., Bifurcation analysis of a certain Hodgkin-Huxley model depending on multiple bifurcation parameters, Mathematics, 6, 6, 1-15 (2018) · Zbl 1407.37120
[53] Trovato, C.; Passini, E.; Nagy, N.; Varró, A.; Abi-Gerges, N.; Severi, S., Human purkinje in silico model enables mechanistic investigations into automaticity and pro-arrhythmic abnormalities, J Mol Cell Cardiol, 142, 24-38 (2020)
[54] Mahajan, A.; Shiferaw, Y.; Sato, D.; et al., A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates, Biophys J, 94, 2, 392-410 (2008)
[55] Xie, Y.; Sato, D.; Garfinkel, A.; Qu, Z.; J. N., W., So little source, so much sink: requirements for afterdepolarizations to propagate in tissue, Biophys J, 99, 5, 1408-1415 (2010)
[56] O’Hara, T.; Virág, L.; Varró, A.; Rudy, Y., Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation, PLOS Comput Biol, 7, 5, 1-29 (2011)
[57] Erhardt, A. H.; Mardal, K.-A.; Schreiner, J. E., Dynamics of a neuron-glia system: the occurrence of seizures and the influence of electroconvulsive stimuli, J Comput Neurosci, 48, 2, 229-251 (2020) · Zbl 07272104
[58] Tveito, A.; Lines, G. T., A condition for setting off ectopic waves in computational models of excitable cells, Math Biosci, 213, 2, 141-150 (2008) · Zbl 1145.92019
[59] Tveito, A.; Jæger, K. H.; Kuchta, M.; Mardal, K.-A.; Rognes, M. E., A cell-based framework for numerical modeling of electrical conduction in cardiac tissue, Front Phys, 5 (2017)
[60] Jæger, K. H.; Edwards, A. G.; McCulloch, A.; Tveito, A., Properties of cardiac conduction in a cell-based computational model, PLOS Comput Biol, 15, 5, 1-35 (2019)
[61] Kaboudian, A.; Cherry, E. M.; Fenton, F. H., Real-time interactive simulations of large-scale systems on personal computers and cell phones: toward patient-specific heart modeling and other applications, Sci Adv, 5, 3 (2019)
[62] Niederer, S. A.; Lumens, J.; Trayanova, N. A., Computational models in cardiology, Nat Rev Cardiol, 16, 2, 100-111 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.